Pytorch下用Bert+MLP实现文本情感分类网络

上传者: m0_61142248 | 上传时间: 2023-05-15 21:48:36 | 文件大小: 14KB | 文件类型: PY
在Pyrotch上实现情感分类模型,包含一个BERT 模型和一个分类器(MLP),两者间有一个dropout层。BERT模型实现了预训练参数加载功能,预训练的参数使用HuggingFace的bert_base_uncased模型。同时在代码中实现了基于预训练BERT模型的下游情感分类任务的fine_tune,包含了训练集上的训练、测试集上测试评估性能等内容。 情感分类的大致过程为:首先,将一个句子中的每个单词对应的词向量输入BERT,得到句子的向量表征。然后将句向量经过dropout层再输入分类器,最后输出二元分类预测。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明