擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2022-12-26 12:25:23 512KB matlab
1
基于python的自旋波分析程序,基于MFA的源码,优化了部分代码,新增功能:获取特定频率模式的空间分布。
1
1.本程序实现了二自由度串行机械臂的改进固定时间滑模控制器,参考文献为《机械臂的改进固定时间滑模控制方法设计》《Design of Improved Fixed Time Sliding Mode Control Method for Manipulator Trajectory Tracking》,以.m文件实现对控制器的仿真。 2.压缩包里有参考文献名、仿真图(.jpg格式)、数据包(.mat)、需要的.m文件. 3.是在matlab(R2016B)上实现的。存.m文件,无.slx文件。
1
针对生产与运输两个过程的联合决策,通过分析一类生产-运输批量优化问题,建立的混合0-1整数规划模型整合了多产品多阶段能力约束批量生产和产品运输。其中运输成本由运输工具使用数量决定,当企业内部运输能力不能满足运输需求时可将运输外包,但需支付更高的运输成本。根据此问题的特点,构造改进蚁群算法求解,令其信息素和启发信息都存在0和1两种状态下的不同取值,通过转移概率确定0-1生产准备矩阵,进一步得到生产矩阵和运输计划。仿真实验结果表明在生产批量决策的同时考虑运输,可以减少运输成本,令总费用最小,通过将实验结果与其
2022-12-21 23:23:29 632KB 工程技术 论文
1
摘要:针对传统配电网区域规划方法无法满足实际需求,而基于传统聚类算法的配电网区域规划方法存在着初始聚类中心选取不合理和聚类个数不确定的问题。文中对传统K-mea
1
G银行LN分行客户关系管理系统的改进研究.pdf
2022-12-20 14:21:27 2.29MB 文档资料
1
基于元胞自动机模拟和遗传算法改进的动态网络分配模型分析(Matlab完整程序和数据) 元胞自动机模拟,遗传算法改进,动态网络分配模型分析,Matlab完整程序和数据。 元胞自动机,遗传算法是很久之前就提出的模型,受碍于计算设备的局限,经过实践的证明,如今才应用于本领域也是非常有用的工具。 NaSch模型与NSGA—II算法结合,在对交通网络基于完善规则的模拟的情况下,应用恰当的算法可以对交通网进行一定程度的优化。
K均值的时间复杂度为NKTD,其中,N代表样本个数,K代表k值,即聚类中心点个数,T代表循环次数,D代表样本数据的维度。 本算法的改进主要在以下方面: 一, 初始聚类中心点,传统的初始中心点是随机选择,由于K均值算法受初始中心点影响较大,为获得更好的效果,在本方法中,先将数据采用层次聚类的方法预处理,得到的k个中心点作为K均值算法的中心点。 二, 传统的聚类中心点更新是在结束一次循环后,本方法的聚类中心采用实时更新策略,即每次将一个模式归于一个新的聚类中心时,即立刻更新新的所属中心和原属聚类中心的中心值,增强算法的收敛性。 三, 为达到类内方差最小化,类类方差最大化这一原则,考虑到往往设定的K值不一定能很好实现聚类效果,故将以往的固定聚类中心改为一浮动区间。原有K为最小聚类中心个数,另设一聚类中心个数上限maxK。其具体实现如下: 1) 当一待聚类的模式得到其最近中心时,计算该聚类中心类内方差和将此模式归于该中心之后的类内方差,如果两者差别大于某设定阈值,则以该模式数据为基础,得到一新的聚类中心。 2) 当当前聚类中心个数等于设定的最大聚类中心时,合并最相邻的两个聚类。为使得到的聚类效果更为均衡,应该优先合并维度较小的聚类类别。
2022-12-19 08:49:27 1.85MB 层次聚类 K均值 不定K
1
将传统均值漂移算法进行改进,针对有遮挡,目标快速变化以及目标尺度变化等情况进行改进
2022-12-19 04:08:09 370KB 均值漂移算法 改进 遮挡
1
图像显着性检测算法matlab代码mDRFI _ Matlab 皮肤镜图像中的显着性检测 皮肤镜图像中的显着性检测,如本文所述:M. Jahanifar等人(“皮肤镜图像中病变的受监督的显着性图驱动分割”)(arXiv :) **这是用于在皮肤镜图像中进行病变分割的算法的一部分,在“ ISIC2017:针对黑色素瘤检测的皮肤病变分析-第1部分:分割”中排名第七。 可以在上述论文中获得对分割方法的完整说明** mDRFI是用于显着性检测的DRFI模型的修改版本,在论文“论文显着物体检测:具有区别性的区域特征集成方法”(arXiv :)中进行了描述。 我们为显着性特征添加了一些新的区域属性描述符,以便更好地检测皮肤镜图像中的病变。 另外,提出了新的伪背景区域以提高显着性检测。 此实现包含显着性检测方法(mDRFI)的全部pipiline,包括培训和测试阶段。 代码中还实现了颜色恒定性校正。 首先,运行compile.m来编译mex文件(您需要c ++编译器,例如Windows上的Microsoft Visual Studio才能执行此操作)。 如果您想训练自己的随机森林回归器,请查看tra
2022-12-18 17:40:53 2.71MB 系统开源
1