慢性肺疾病 使用卷积神经网络对肺部疾病进行分类
2022-09-27 15:08:37 3.99MB
1
内含Mask R-CNN原文、Faster R-CNN系列文章、网上收集的资料、对内容的详解、很好的学习参考。 Mask R-CNN全文翻译:https://yidamyth.blog.csdn.net/article/details/127038317?spm=1001.2014.3001.5502 学习PySide2基于Python开发人工智能系统应用: https://blog.csdn.net/weixin_43312117/article/details/125512308?spm=1001.2014.3001.5501 Mask R-CNN数据标注和模型训练:https://yidamyth.blog.csdn.net/article/details/124851003
2022-09-27 12:05:35 74.11MB MaskR-CNN 全文翻译 学习资料
1
tensorflow中文文档,查问题比较有用。官网英文地址为https://www.tensorflow.org/
2022-09-26 19:20:19 7.06MB tensorflow 深度学习 机器学习 cnn
1
基于matlab深度学习工具箱来设计卷积神经网络用来对图像上的水体部分进行识别,并生成水体陆地二值化图像。采用的是9层卷积神经网络用来对图像进行特征提取和分类,水体识别的准确率可以达到96%以上。
2022-09-26 13:00:07 34.68MB cnn matlab_图像处理 图像分割 深度学习
具有自适应时间特征分辨率的3D CNN CVPR 2021论文的源代码: 。 即将推出! 敬请关注! @inproceedings{sgs2021, Author = {Mohsen Fayyaz, Emad Bahrami, Ali Diba, Mehdi Noroozi, Ehsan Adeli, Luc Van Gool, Juergen Gall}, Title = {{3D CNNs with Adaptive Temporal Feature Resolutions}}, Booktitle = {{The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) }}, Year = {2021} }
1
matlab除噪声代码船只提取 基于CNN的系统,用于对血管进行分割,然后从眼底图像中去除血管,以使用在此清理过的眼底版本上方训练的分类器以及经过训练的分析器来分析血管图以识别与血管形状相关的临床特征的分类器,从而提供更好的诊断模型,像船只的曲折。 训练数据 训练数据是从和数据集中获得的。 对于STARE数据集,使用由Valentina Kouznetsova注释的目标血管图,因为它更加详细。 数据预处理和数据集生成 笔记本用于根据DRIVE和STARE数据集中的可用图像生成256 X 256色块的庞大数据集。 补丁是随机生成的。 对于健壮的训练,还会生成涉及图像翻转和噪声添加的补丁。 为了使用笔记本而不进行任何更改,请确保以下树结构用于存储DRIVE和STARE数据集: VesselExtract/ ├── DRIVE │   ├── test │   └── training ├── STARE │   ├── labels-vk │   └── stare-images ├── generate_patches.ipynb ├── README.md ├── research_m
2022-09-19 17:46:54 4.32MB 系统开源
1
在本文中,我们提出了一个动态调度来调整正则化强度,以适应各种网络架构和训练过程。我们的动态正则化是根据训练损失的变化自适应的。对于轻网络架构,它产生低正则化强度,而对于重网络架构,产生高正则化强度。此外,强度是自定步长增长的,以避免过拟合。实验结果表明,所提出的动态正则化方法优于现有的ShakeDrop、Shake-Shake和DropBlock正则化方法。未来,我们将研究动态正则化在数据增强和基于退出的方法中的潜力。
2022-09-19 14:08:56 3.25MB 深度学习 CNN
1
一个用tensorflow学习mnist手写数字库的学习算法示例
2022-09-15 13:01:44 1KB mnist tensorflow
基于雷达数据构建的人工神经网络学习系统来雷达图像预测未来降水 步骤4
2022-09-15 09:01:33 5KB cnn wck precipitation radar
该项目是使用卷积神经网络进行检测森林火灾。 该数据集包含三类图像:“火”、“不火”、“开始火”,总共约 6000 张图像。 该模型可用于从森林的监控录像中检测火灾或火灾的开始或者未发生火灾。 该模型可以实时应用于低帧率监控视频(火灾移动速度不是很快的监控视频),并在发生火灾时发出警报。
1