基于深度置信网络(DBN)回归预测,深度置信网络DBN回归预测,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 20:52:13 41KB 网络 网络 matlab
1
基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1
针对城市中停车位狭小、现有自动泊车方法缺乏连贯性的问题, 提出一种自动平行泊车算法。对现有的五阶多项式路径规划方法加以改进, 并有针对性地设计罚函数, 采用遗传算法计算最佳泊车路径和最小泊车空间, 实现自动平行泊车。仿真结果表明, 该算法能快速有效地完成泊车, 车辆损伤小, 对空间的要求最低。
2024-03-07 20:43:18 1.32MB 平行泊车 路径规划 约束空间 遗传算法
1
基于粒子群算法(PSO)优化门控循环单元(PSO-GRU)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2020及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-07 14:13:28 26KB
1
基于模拟退火遗传算法的全向AGV路径规划的学习与实现的matlab代码,包括地图生成,交叉重组、变异重组等功能代码的实现。
1
负荷预测数据集(13个月,每天的用电量、温度、湿度、风速、降雨的详细信息).rar
2024-03-04 17:08:31 1015KB 数据集 负荷预测 电力系统 机器学习
1
为了提高瓦斯涌出量预测的精度和预测模型的泛化能力,提出了一种基于蚁群算法(ACO)优化支持向量机(SVM)参数的瓦斯涌出量预测方法。在SVM所建立预测模型中各个参数的取值区间内,采用蚁群优化算法计算预测模型各个参数的最佳值,基于最佳参数的SVM建立瓦斯涌出量预测模型。结果表明:采用未优化的SVM建立的预测方法,其个别预测误差相对较大,最大误差为8.11%,平均误差为4.68%,采用ACO对于预测模型的参数进行优化后,预测性能有显著提高,最大误差为4.37%,平均误差为2.89%,表明所建议的方法是有效、可行的。
1
为了准确预测瓦斯涌出量,提出了一种基于模糊聚类和支持向量机(SVM)的瓦斯涌出量预测方法。将瓦斯涌出量相关影响因素作为特征空间中的样本,采用模糊C均值聚类对特征空间中的样本进行聚类分析,对于所得到的不同类别样本分别建立SVM预测模型。结果表明:采用单纯的SVM预测方法,对于不同特征的样本的预测个别预测误差相对较大,其最大误差为8.11%,平均误差为4.68%,采用文中所建议的用FCM对样本分类后再进行SVM预测,预测精度有明显改善,最大误差和6.94%,平均误差为3.35%,表明所建议的方法是有效和可行的。
2024-03-04 09:40:13 212KB 瓦斯涌出量 模糊C均值聚类
1