今天给大家讲讲关于AI,打通视觉,NLP,机器学习,深度学习,推荐搜索,AIGC,大模型等等这些当下最热门技术,我将从以下9个方面给大家做详细讲解关于AI人工智能算法工程师的相关知识。 阶段一:从AI全面认知到基础夯实-行业认知&Python&必备数学 阶段二:从AI核心技术理论体系构建到项目实战: 机器学习&深度学习 阶段三:构建AI的数据驱动力--数据预处理工程 阶段四:AI 深度学习框架实战- Pytorch从基础到进阶 阶段五:AI核心算法+方法——经典深度学习模型实战 阶段六:AI计算机视觉核心技术与项目实战-工业&医疗与直播&自动驾驶等主流领域 阶段七:AIGC火热领域技术与项目-文本图像生成&扩散模型等 阶段八:NLP自然语言处理与LLM大语言模型应用实战 阶段九:AI工程师入行&转化&就业&面试指导 首先,我们先来说说什么是人工智能: 人工智能(Artificial Intelligence),简称为AI,是一门集多学科于一体的综合性技术科学。它的核心目的是创造出能够模拟人类思维能力的机器,使其具备感知、思考和决策的能力。 自然语言处理(Natural Lang
2024-02-23 14:00:38 3KB
1
集成电路是现代信息技术的产业核心和基础。随着信息技术的不断发展,人工智能、自动驾驶、云计算等应用通常要分析和处理海量数据,这对计算装置的算力提出了全新的要求。例如,在人工智能领域,人工智能大模型的算力需求在以每 3-4 个月翻倍的速度增长。然而,集成电路设计遇到“功耗墙”、“存储墙”、“面积墙”,传统集成电路尺寸微缩的技术途径难以推动算力持续增长。另一方面,在“万物智能”和“万物互联”的背景下,产业应用呈现出“碎片化”特点,需要探索新的芯片与系统的设计方法学,满足应用对芯片敏捷设计的要求。 对于我国而言,集成芯片技术对于集成电路产业具有更加重要意义。由于我国在集成电路产业的一些先进装备、材料、EDA 以及成套工艺等方面被限制,导致我国短期内难以持续发展尺寸微缩的技术路线。集成芯片技术提供了一条利用自主集成电路工艺研制跨越 1-2 个工艺节点性能的高端芯片技术路线。同时,我国集成电路产业具有庞大市场规模优势,基于现有工艺制程发展集成芯片技术可以满足中短期的基本需求,并可借助大规模的市场需求刺激集成芯片技术的快速进步,走出我国集成电路产业发展特色。
2024-02-22 17:10:21 2.53MB 人工智能 自动驾驶
1
【前言】写过博客或者github上面的文档的,应该知道Markdown语法的重要性,不知道的朋友们也别着急,一篇博客轻松搞定Markdown语法。话说这个语法超
2024-02-21 13:23:43 7.78MB 人工智能
1
(1)嵌入式系统-linux (2)使用tvm的opencl后端调用mali-gpu (3)rk3588的mali-gpu安装包:G610
2024-02-20 15:37:00 12.04MB 人工智能 深度学习
1
yolov8n-seg.pt,yolov8s-seg.pt,yolov8m-seg.pt,yolov8l-seg.pt,yolov8x-seg.pt分割预训练权重文件
2024-02-17 19:52:20 284.3MB 图像分割 深度学习 人工智能
1
CHATGPT prompt使用指南 AI引擎:Prompt指令设计绿皮书
2024-02-16 00:48:53 3.64MB 人工智能 AI prompt
1
第二章 图像去噪原理与神经网络简介 9 在上图去噪框架中有几个需要注意的点,第一是分解的图片块的大小不是盲 目的, p p 大小取得不同,则最终去噪的效果也不尽相同,取图片块太小,当噪 声较大时,此时去噪的结果会产生更多的可能性。而加噪的过程是不可逆的,因 此这样一来学习将变得非常复杂,找到公式(2-5)中的逼近 -1 的 f 函数将变更加 困难。另外一方面,虽然理论上来说取更大的 p p 是更好的,但实际情况并不是 如此,图片越大计算量越大,所以一般需要实验后折中取值。为了分开学习降低 复杂度,所以我们得折中选取了一个合适我们去噪模型的尺寸。在这个方面,尺 寸大小对去噪效果的影响在文献[10]中已经做过比较,不再详细展开。另外一点需 要注意的是,图像拆分处理之后是如何聚合并还原成原图像大小的。实际上我们 可以这样理解,对于每一个分别去噪的图片块,经过一个处理函数从 p p 变成 q q ,最后将这些尺寸为 q q 的图片按在原图中像素的位置点重聚回去,如果有 很多不同的图片块具有重叠的像素位置,则对这些重复的位置采用加权求平均或 者高斯平均的方法算出最终聚合回原图变成 m nR  的去噪图像。在神经网络中则是 采用全连接层的方式还原成 m nR  的去噪图像,其整体思想也是拆分再聚合。 2.2 人工神经网络 20世纪 80年代,人工智能领域兴起了人工神经网络(Artificial Neural Network, ANN)的研究热潮,ANN 也被人们简称为神经网络。它是一种仿照生物学中的神 经网络结构而设计的类似的网络结构,有点类似于生物脑细胞中的响应过程,通 过网络拓扑结构模拟生物神经元细胞的连接方式,以大量的简单原件构成一个复 杂的网络,以其强大的并行计算能力,高效的自主学习能力和高容错性能力进行 智能化自适应学习的网络。是一种高度非线性的模拟生物神经系统的网络结构, 可以解决复杂非线性运算和逻辑运算的网络系统。 2.2.1 神经元 如图 2-3 所示,为一个生物神经元,主要有细胞核,树突、轴突、突触、髓鞘 等结构。我们知道生物的脑神经网络由众多神经元一一连接而形成网络,树突和 突触主要用来收集传递信息,轴突主要作用相当于放行兴奋信号,阻挡抑制电平 信号。神经元就像一个处理器,释放或抑制电平信号。
2024-02-15 11:57:51 2.57MB denoise
1
每个大点又包括许多的小点,所以学起来还挺费劲的。可能需要一定的学历要求,有一定的知识基础,特别是数学基础,这是必备的知识。 学习时建议先从简单的开始。如果从最难的部分开始的话,很有可能你会气馁,会放弃,所以,不如在学习过程中制定一些小小的可实现的目标,让自己充满动力。 以下是从在这领域学过的大佬得到的经验。 1、选择一种编程语言(至少要学会一门语言) 首先,你得学会一种编程语言。虽然编程语言的选择有很多种,但大部分人都会选择从Python开始,因为Python的库更适用于机器学习。它提供了高效的高级数据结构,还能简单有效地面向对象编程,后面可以学学C或者C++。 “Python是一个不错的选择”,它扮演着科学计算和数据分析的重要角色(拥有如Numpy和SciPy这样的库),同时针对不同的算法,有丰富的库支撑。
1
NineAi 新版AI系统网站源码 ai人工智能源码搭建 ChatGPT能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务简介: Nine AI.ChatGPT是基于ChatGPT开发的一个人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。 必要环境 nodejs version > 16 pnpm version > 6 mysql version >= 5.7 redis 目录结构 chat 用户端代码 admin 管理端代码 service 服务端代码 本地开发 三端统一命令 pnpm install 安装依赖 pnpm dev 启动项目 pnpm build 打包项目 启动项目 分别安装依赖 pnpm i 首先启动服务端进入service 创建.env文件 在其中修改 测试数据库信息和redis 配置完成后 pnpm dev 数据库通过orm映射 启动项目会自动创建数据库 启动完成后可以打开
2024-01-25 20:54:28 8.85MB 人工智能 毕业设计
1