状态:活动(在活动开发中,可能会发生重大更改) 该存储库将实现经典且最新的深度强化学习算法。 该存储库的目的是为人们提供清晰的pytorch代码,以供他们学习深度强化学习算法。 将来,将添加更多最先进的算法,并且还将保留现有代码。 要求 python <= 3.6 张量板 体育馆> = 0.10 火炬> = 0.4 请注意,tensorflow不支持python3.7 安装 pip install -r requirements.txt 如果失败: 安装健身房 pip install gym 安装pytorch please go to official webisite to install it: https://pytorch.org/ Recommend use Anaconda Virtual Environment to manage your packages 安装tensorboardX pip install tensorboardX pip install tensorflow==1.12 测试 cd Char10\ TD3/ python TD3
1
项目3:合作与竞争 介绍 在这种环境下,两名特工控制球拍在球网上弹跳球。 如果探员将球击中网,则得到+0.1的奖励。 如果探员让一个球击中地面或越界将球击中,则其收益为-0.01。 因此,每个特工的目标是保持比赛中的球权。 观察空间由8个变量组成,分别对应于球和球拍的位置和速度。 每个代理都会收到自己的本地观察结果。 有两个连续的动作可用,分别对应于朝向(或远离)网络的运动和跳跃。 下图显示了最终的奖励进度。 环境在1820集中得到解决 算法: 为了解决此环境,我实现了Multi-DDPG算法。 实现的功能如下: 每个特工都有独立的演员和评论家 集中培训:每个代理的批评者不仅将自己的演员的行为和状态作为输入,而且还将所有其他代理的状态和行为作为输入。 由于在测试过程中仅使用参与者,并且参与者仅取决于相应参与者的状态,因此代理可以自由地学习自己的奖励结构。 下图[来源: :
2021-06-09 20:21:22 45.93MB reinforcement-learning robotics tennis agents
1
Mathwork公司官方推出的《利用MATLAB进行强化学习》的系列电子书,个人对其进行了翻译。英文原版电子书与翻译后的电子书均在压缩包中,便于初学者了解强化学习以及如何利用MATLAB进行强化学习的一些基本知识。
2021-06-07 10:47:17 66.1MB MATLAB RL
1
Richard S. Sutton 教授的经典教材《增强学习导论》(Reinforcement Learning: An Introduction)第二版,2018年在线草稿版
2021-06-05 10:33:37 38.03MB 强化学习 Richard S. S
1
增强学习导论 强化学习导论 Reinforcement learning an introduction 中文版
2021-06-05 09:03:57 2.73MB 强化学习导论 Reinforcement introduction
Algorithms for Reinforcement Learning PDF+PPT
2021-06-04 09:10:59 14.65MB 增强学习
1
计算机视觉Github开源论文
2021-06-03 09:09:11 2.91MB 计算机视觉
1
Unity ML-Agents工具包 ()() Unity Machine Learning Agents工具包(ML-Agents)是一个开放源代码项目,使游戏和模拟能够用作训练智能代理的环境。 我们提供最新算法的实现(基于PyTorch),使游戏开发人员和业余爱好者可以轻松地训练2D,3D和VR / AR游戏的智能代理。 研究人员还可以使用提供的易于使用的Python API通过强化学习,模仿学习,神经进化或任何其他方法来训练Agent。 这些训练有素的代理可以用于多种目的,包括控制NPC行为(在多种设置下,例如多代理和对抗),自动测试游戏版本以及评估预发布的不同游戏设计决策。 ML-Agents工具包对游戏开发人员和AI研究人员都是互惠互利的,因为它提供了一个中央平台,可以在Unity丰富的环境中评估AI的进步,然后使更广泛的研究和游戏开发者社区都可以使用。 特征 18个以上 支
2021-06-01 15:17:37 107.98MB reinforcement-learning deep-learning unity unity3d
1
强化学习 作为我的论文的最后部分,“协作多智能体学习的方法和实现”,涉及从单一智能体到多智能体的RL研究,以及协作和协作多智能体学习的最新技术。的算法和实现,在MATLAB中完成了某些RL方法的实现。 论文论文也被上传,其中包含参考文献。 单人强化学习 动态编程 蒙特卡洛方法 时差学习 线性函数逼近 深度Q网络 具有线性函数逼近的策略梯度 多智能体强化学习 集中式Q学习 滞后Q学习 多代理演员批评
2021-05-22 13:16:32 4.39MB MATLAB
1
This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems.
2021-05-16 22:23:10 7.22MB Deep Learning Reinforcement le
1