超分辨率matlab代码韩 我们的ECCV 2020论文“通过整体注意力网络实现单图像超分辨率”的PyTorch代码 该存储库适用于以下论文中介绍的HAN 张玉伦,李坤鹏,李凯,王丽晨,钟斌能和付云,“通过整体注意力网络实现单图像超分辨率”,ECCV 2020, 该代码基于RCAN(PyTorch)构建并在具有Titan X / 1080Ti / Xp GPU的Ubuntu 16.04 / 18.04环境(Python3.6,PyTorch_0.4.0,CUDA8.0,cuDNN5.1)上进行了测试。 内容 介绍 信息功能在单图像超分辨率任务中起着至关重要的作用。 事实证明,渠道关注对于保留每一层中信息量丰富的功能是有效的。 但是,频道注意力将每个卷积层视为一个单独的过程,从而错过了不同层之间的相关性。 为了解决这个问题,我们提出了一个新的整体注意网络(HAN),该网络由一个图层注意模块(LAM)和一个通道空间注意模块(CSAM)组成,以对图层,通道和位置之间的整体相互依赖性进行建模。 具体地,提出的LAM通过考虑各层之间的相关性来自适应地强调分层特征。 同时,CSAM学习每个通道所有
2023-03-09 20:25:00 15.31MB 系统开源
1
BERT-NER-Pytorch-master
2023-03-09 19:19:58 229KB nlp
1
图片GPT 图像GPT的PyTorch实施基于像素的纸张生成式预训练和随附的。 模型生成的来自测试集的半图像的完成。 输入第一列; 最后一栏是原始图片 iGPT-S已在CIFAR10上进行了预培训。 由于该模型仅在CIFAR10而非所有ImageNet上进行了训练,因此完成程度相当差。 在制品 GPU上的批量k均值用于量化更大的数据集(当前使用sklearn.cluster.MiniBatchKMeans 。) BERT样式的预训练(当前仅支持生成。) 从OpenAI加载预训练的模型。 重现至少iGPT-S结果。 根据他们的,最大的模型iGPT-L(1.4 M参数)接受了2500 V100天的培训。 通过大大减少注意力头的数量,层数和输入大小(这会成倍地影响模型大小),我们可以在不到2小时的时间一台NVIDIA 2070上在上训练自己的模型(26 K参数)。 分类微调 采
2023-03-09 18:35:26 962KB gpt gpt2 image-gpt Python
1
包括4点: 1、安装Anaconda 2、安装CUDA 3、安装PyTorch 4、安装PyCharm 本次由于选择的PyTorch是1.4版本,支持的是CUDA10.1,所以CUDA安装的版本是10.1。 一、安装Anaconda 1、win10 Anaconda官网 https://www.anaconda.com/distribution/ 如下图,选择 根据自己的电脑位数进行选择,下载后安装即可。注意一点 需要勾选这两个选项。 确认安装成功:打开CMD,输入 conda list 如果出现内容,则代表安装成功。 2、Ubuntu 也打开官网,点击相应版本进行下载,下载后安装即可。
2023-03-09 13:52:56 762KB ar arm bu
1
YOLOV3:只看一次目标检测模型在Pytorch当中的实现-替换高效网络主干网络 2021年2月8日更新:加入letterbox_image的选项,关闭letterbox_image后网络的地图得到大幅度提升。 目录 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 行动计划0.5:0.95 行动计划0.5 挥发性有机化合物07 + 12 VOC-Test07 416x416 -- 78.9 所需环境 火炬== 1.2.0 文件下载 训练所需的efficiencynet-b2-yolov3的权重可以在百度云下载。链接: : 提取码:hiuq其他版本的efficiencynet的权重可以将YoloBody(Config,phi = phi,load_weights = False)的load_weights参数设置成True,从而获得。 预测步骤 a,使用预训练权
2023-03-08 21:17:47 5.32MB 系统开源
1
插槽填充 使用RNN和ATIS数据进行插槽填充。 要求 Python3.6 火炬进度条 数据集 航空旅行信息系统(ATIS)数据集。 这是一个示例句子及其来自数据集的标签: 表演 航班 从 波斯顿 至 新的 约克 今天 Ø Ø Ø B部门 Ø B-arr - B日期 结果 双GRU 精确 记起 F1 动车组 99.77 99.83 99.8 测试集 94.78 94.75 94.76
1
yolov5s model
2023-03-07 20:00:38 14.48MB yolov5pytorch pytorch ncnn models
1
CTPN(tensorflow)+CRNN(pytorch)+CTC-附件资源
2023-03-07 11:04:53 106B
1
deep learning with pytorch英问书籍,入门pytorch必备书籍。。
2023-03-06 22:35:12 7.29MB deep learnin
1
分享课程——Pytorch框架全流程开发医学影像端到端判别实战项目课程
2023-03-06 22:34:31 294B Pytorch 深度学习
1