文章是使用HMM方法对手势进行识别,初学者可以参考学习一下。
2019-12-21 18:57:49 2.22MB 手势识别
1
HMM识别4中方言,每种方言80个作为训练,40个作为识别。MATLAB代码。
2019-12-21 18:57:40 32.61MB HMM语音识别
1
HMM的C和C++实现,实现的是离散型的HMM,包括离散和连续的HMM实现.
2019-12-21 18:56:27 2.97MB CHMM HMM-GMM
1
隐马尔科夫模型HMM的具体算法代码,学习HMM不可多得的好资源。
2019-12-21 18:56:27 299KB 向前后算法
1
C语言实现的HMM 语音识别算法,比较经典
2019-12-21 18:56:15 8KB HMM 语音识别 算法
1
隐马尔可夫模型(HMM)已成为语音识别中的主流技术,首先介绍了语音识别技术的原理和结构,然后介 绍了HMM 的三个基本问题及其解决方法,最后利用Maflab仿真工具设计了一个孤立词的语音识别系统,实现了数 字0—9的识别
2019-12-21 18:55:17 192KB HMM 语音识别 matlab
1
hmm算法matlab实现和实例 hmm_em.m function [LL, prior, transmat, obsmat, nrIterations] = ... dhmm_em(data, prior, transmat, obsmat, varargin) % LEARN_DHMM Find the ML/MAP parameters of an HMM with discrete outputs using EM. % [ll_trace, prior, transmat, obsmat, iterNr] = learn_dhmm(data, prior0, transmat0, obsmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation % % INPUTS: % data{ex} or data(ex,:) if all sequences have the same length % prior(i) % transmat(i,j) % obsmat(i,o) % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'obs_prior_weight' - weight to apply to uniform dirichlet prior on observation matrix [0] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_obs' - if 0, do not change obsmat [1] % % Modified by Herbert Jaeger so xi are not computed individually % but only their sum (over time) as xi_summed; this is the only way how they are used % and it saves a lot of memory. [max_iter, thresh, verbose, obs_prior_weight, adj_prior, adj_trans, adj_obs] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'obs_prior_weight', 0, 'adj_prior', 1, 'adj_trans', 1, 'adj_obs', 1); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, 2); % each row gets its own cell end while (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, exp_num_emit] = ... compute_ess_dhmm(prior, transmat, obsmat, data, obs_prior_weight); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans & ~isempty(exp_num_trans) tran
2019-12-21 18:54:55 24KB hmm
1
MATLAB编写的学习隐马尔科夫模型的程序
2019-12-21 18:54:54 28KB MATLAB HMM 隐马尔科夫模型
1
里面包含有matlab的源代码、GUI界面
2019-12-21 18:54:25 91KB HMM,MATLAB
1
隐马尔科夫模型HMM的具体算法代码,包括前向、后向算法、EM参数重估等。
2019-12-21 18:54:12 304KB matlab
1