隐马尔可夫模型 (HMM) 是一种信号预测模型,已被用于预测经济状况和股票价格。 该项目旨在实现将机器学习算法应用于股票市场的目标。 长短期记忆模型(LSTM)保证了在新的时间状态下,随着隐藏层不断叠加输入序列,之前的信息可以继续向后传播而不会消失。我们的主要目的是通过预测一只股票的涨跌 使用 HMM-LSTM。 Experiment with 4 different models: GMM-HMM XGB-HMM GMM-HMM-LSTM XGB-HMM-LSTM Compared with the results: train_set
2022-12-23 15:27:44 2.56MB HMM-LSTM GMM-HMM XGB-HMM GMM-HMM-LSTM
HMM+GMM语音识别技术详解级PMTK3中的实例-附件资源
2022-02-28 09:02:07 23B
1
hmm模型matlab代码HMM-GMM 这是我个人实现的隐马尔可夫模型和高斯混合模型,这是统计机器学习中的两个经典生成模型。 HMM是在无监督的情况下进行训练的,代码实现了前向后退算法,以在给出部分/全部观测值的任何时间步长计算状态的边际概率,而Baum-Welch算法则用于估计初始概率分布,过渡和排放概率分布。 对于此示例,观察值是空格和字母,但是代码足够通用,可以与任何观察值序列和隐藏状态一起使用。 下面讨论的所有概率将在日志空间中。 HMM的推论被实现为一种维特比算法(动态编程) 依存关系 Python 3.x load_corpus(path) 此功能特定于此示例,用于读取观察顺序。 它将读取路径中的文件,仅保留字母和单个空格对其进行清理,并将所有内容都转换为小写。 它将返回清除输入的字符串。 load_probabilities(path) 此函数在指定的路径中加载pickle文件,该路径包含字典的元组。 第一个字典包含初始状态概率,并将整数i映射到第i个状态的概率。 第二词典包含转换概率和映射整数i到该整数j映射到过渡的从状态i到状态j的概率的第二词典。 最后,第三个字典
2021-10-20 17:12:59 35KB 系统开源
1
HMM的C和C++实现,实现的是离散型的HMM,包括离散和连续的HMM实现.
2019-12-21 18:56:27 2.97MB CHMM HMM-GMM
1