内容概要:本文介绍了基于Matlab 2021b及以上版本的迁移学习在滚动轴承故障诊断中的应用。程序主要分为四个部分:数据预处理、模型加载、迁移学习以及故障分类。首先,对一维轴承振动信号进行预处理,将其转换为二维尺度图图像。接着,加载MATLAB自带的Squeezenet模型进行迁移学习,通过对预训练模型的调整,使其适应轴承故障诊断的任务。最后,使用调整后的模型对轴承故障进行分类,输出分类结果及准确率。实验结果显示,该方法的平均准确率约为98%,并且程序已验证可以正常运行,所有关键步骤都附有详细注释。 适合人群:机械工程领域的研究人员和技术人员,尤其是那些对滚动轴承故障诊断感兴趣的从业者。 使用场景及目标:①用于工业设备维护和故障预测;②提高轴承故障诊断的准确性,减少停机时间;③帮助工程师理解迁移学习在实际应用中的具体实现。 阅读建议:读者应具备一定的Matlab编程基础和基本的机器学习概念,以便更好地理解和应用文中提供的方法和技术。
2025-09-21 16:05:15 1.81MB
1
Parasoft C++test是一款强大的静态代码分析工具,专为C++编程语言设计,用于进行单元测试、静态分析和白盒测试。它旨在帮助开发者在软件开发早期发现潜在的错误和漏洞,提升代码质量和安全性。这份"Parasoft C++test资料库大全"集合了在不同测试环境下遇到的常见问题及其解决策略,对于使用该工具的开发团队来说是极其宝贵的资源。 1. **单元测试**:C++test支持自动化的单元测试,可以生成测试用例并执行,确保代码模块的功能正确性。通过断言和覆盖率报告,开发者能够快速定位和修复代码中的问题。 2. **静态代码分析**:该工具能对源代码进行深度扫描,查找不符合编程规范、可能引发运行时错误或者存在安全风险的代码片段。这些问题包括未初始化的变量、空指针引用、资源泄漏等。 3. **白盒测试**:白盒测试,也称为结构测试,C++test在此方面表现突出,它能够根据程序的内部逻辑结构来设计测试用例,确保所有分支和路径都被充分测试。 4. **多环境测试**:C++test支持多种开发环境和编译器,如Visual Studio、GCC、Clang等,以及不同的操作系统,如Windows、Linux和macOS。这意味着无论你在哪个平台上工作,都能得到一致的测试结果。 5. **问题解决方案**:资料库中包含的常见问题解决方案涵盖了安装配置、运行测试、解释报告、集成到持续集成/持续部署(CI/CD)流程等多个方面。这可以帮助开发者迅速解决问题,提高工作效率。 6. **操作指南**:对于新用户,C++test的操作指南是学习如何使用该工具的关键。它通常会涵盖基本概念、设置项目、定制规则、运行分析和查看结果等内容。 7. **代码质量改进**:除了测试,C++test还能提供关于代码风格和最佳实践的建议,帮助提升代码质量,符合行业标准,如 MISRA、CERT 和 DO-178B/C。 8. **报告和可视化**:工具生成的报告详尽且易于理解,通过图表和颜色编码,可以直观地看到代码健康状况和改进趋势。 9. **集成与自动化**:C++test可轻松与版本控制系统(如Git)、构建工具(如Jenkins)和持续集成系统集成,实现测试过程的自动化。 10. **教育与培训**:这份资料库可能还包含了教学材料和案例研究,帮助开发者更好地理解和应用C++test的功能,提高团队的测试技能。 "Parasoft C++test资料库大全"是一份全面的资源,对于使用或计划使用该工具的开发者来说,它不仅能解决实际遇到的问题,也能提升整个团队的软件测试能力和代码质量管理水平。
2025-09-20 09:28:15 18.97MB Parasoft C++test 单元测试 测试工具
1
内容概要:本文介绍了如何使用最大互信息系数(MIC)在MATLAB中实现回归预测数据集的特征自变量选择,从而降低数据维度并简化数据复杂度。首先解释了MIC的概念及其在特征选择中的优势,特别是其对非线性关系的敏感性和广泛的适用性。接着提供了详细的MATLAB代码示例,包括数据加载、MIC值计算、特征筛选以及使用选定特征进行回归拟合的具体步骤。最后强调了MIC作为一种评估工具的作用,同时指出实际应用中还需结合领域知识和其他高级算法进行综合考量。 适合人群:从事数据分析、机器学习领域的研究人员和技术人员,尤其是那些希望提高特征选择效率的人群。 使用场景及目标:① 需要在回归分析中有效减少数据维度;② 希望通过非参数方法评估变量间的依赖关系;③ 寻找一种能够处理离散或连续数据类型的特征选择方法。 其他说明:虽然文中提供的代码示例较为基础,但可以作为一个良好的起点帮助初学者理解和掌握MIC的应用。对于更复杂的情况,则需要进一步探索和改进现有算法。
2025-09-19 22:17:05 667KB
1
通过采用Adomian分解方法,解决了分数阶简化Lorenz系统并在数字信号处理器(DSP)上实现了该方法。 该系统的Lyapunov指数(LE)光谱是基于QR分解法计算的,与相应的分叉图非常吻合。 我们通过颜色最大LE(LEmax)和混沌图分析了参数和分数导数阶数对系统特性的影响。 发现阶数越小,LEmax越大。 迭代步长也会影响混沌的最低顺序。 此外,我们在DSP平台上实现了分数阶简化的Lorenz系统。 在DSP上生成的相图与通过计算机仿真获得的结果一致。 它为分数阶混沌系统的应用奠定了良好的基础。 ### 基于Adomian分解方法的分数阶简化Lorenz系统的特性分析和DSP实现 #### 摘要 本文研究了分数阶简化Lorenz系统的特性,并使用Adomian分解方法求解该系统。此外,还在数字信号处理器(DSP)上实现了此方法。系统Lyapunov指数(LE)光谱的计算基于QR分解法,结果显示其与对应的分岔图高度匹配。我们通过色彩最大LE(LEmax)和混沌图来分析参数和分数导数阶数对系统特性的影响。研究发现,阶数越小,LEmax越大;迭代步长也会影响混沌存在的最低阶数。此外,我们还在DSP平台上实现了分数阶简化的Lorenz系统,生成的相图与通过计算机仿真得到的结果相符,为分数阶混沌系统的应用提供了良好的基础。 #### 关键知识点详解 **1. 分数阶微积分** 分数阶微积分是一门研究非整数阶导数和积分的数学分支,它扩展了传统的微积分理论。在分数阶微算中,导数的阶数可以是非整数形式,例如0.5或1.7等。分数阶微积分在描述具有记忆特性的物理过程方面具有独特优势,特别是在非线性动力学、控制理论等领域有着广泛的应用前景。 **2. 简化Lorenz系统** Lorenz系统是一种经典的混沌模型,由爱德华·诺顿·洛伦兹在1963年提出,用于模拟大气环流。简化Lorenz系统是指在原始Lorenz系统基础上进行简化后的版本,通常保留了原系统的混沌特性但减少了复杂度,使其更易于数值分析和理论研究。 **3. Adomian分解方法** Adomian分解方法(ADM)是由乔治·阿多米安提出的一种解析和数值解非线性方程的方法。这种方法将复杂的非线性方程分解成一系列容易解决的线性方程,从而避免了传统方法中的迭代过程,提高了计算效率和准确性。对于分数阶微分方程,Adomian分解方法特别有用,因为它能够有效地处理这类方程的复杂性。 **4. Lyapunov指数光谱** Lyapunov指数是用来衡量动力系统长期行为稳定性的指标,特别是对于混沌系统来说非常重要。Lyapunov指数光谱可以揭示系统中的各种动态特征,如稳定性、周期性和混沌性。通过计算系统不同参数下的Lyapunov指数光谱,可以深入理解系统的动态行为。 **5. QR分解法** QR分解是一种矩阵分解方法,用于将矩阵分解为一个正交矩阵Q和一个上三角矩阵R的乘积。在本文中,QR分解法被用来计算简化Lorenz系统的Lyapunov指数光谱。这种计算方法的优点在于能够提供更加准确和稳定的指数估计值。 **6. 数字信号处理器(DSP)实现** DSP是一种专门设计用于快速执行信号处理算法的处理器。本文中,在DSP上实现了分数阶简化Lorenz系统及其Adomian分解方法。这不仅验证了方法的有效性,还为实际应用中的实时处理提供了可能。通过在DSP上生成的相图与通过计算机仿真得到的结果的一致性,证明了该方法在DSP平台上的可行性。 **结论** 本研究通过采用Adomian分解方法解决了分数阶简化Lorenz系统,并在数字信号处理器上实现了该方法。通过对系统特性的影响分析表明,分数导数阶数的减小会导致最大Lyapunov指数增大,而迭代步长也会影响混沌现象的存在条件。此外,DSP实现的成功验证了分数阶混沌系统在实际应用中的潜力,为进一步的研究和发展奠定了坚实的基础。
2025-09-19 16:30:29 617KB Fractional calculus; simplified Lorenz
1
基于自抗扰控制的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自抗扰控制下的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自抗扰控制的非奇异终端滑模控制_pmsm 包含:详细公式推导以及终端滑模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自抗扰控制的非奇异终端滑模控制_pmsm; 详细公式推导; 终端滑模控制设计方法; 稳定性推导; 1.5延时补偿。,自抗扰控制下的PMSM非奇异终端滑模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自抗扰控制(ADRC)和非奇异终端滑模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自抗扰控制的PMSM非奇异终端滑模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自抗扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端滑模控制是一种新型的滑模控制技术,其核心在于设计一种非奇异滑模面,避免传统滑模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自抗扰控制的PMSM非奇异终端滑模控制的相关公式。这包括建立PMSM的数学模型,设计自抗扰控制器以补偿系统内外扰动,以及构造非奇异终端滑模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自抗扰控制的非奇异终端滑模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、滑模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自抗扰控制的PMSM非奇异终端滑模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
易语言是一种专为中国人设计的编程语言,它以简化的语法和直观的界面著称,旨在降低编程的难度,让更多的非专业人员也能参与到程序开发中来。在易语言中,获取网卡信息是一项常见的系统操作,对于网络相关程序的开发至关重要。本文将详细介绍如何使用易语言简单地获取计算机的网卡信息。 我们要了解什么是网卡信息。网卡信息主要包括设备的物理地址(MAC地址)、网络接口名称、IP地址、子网掩码、默认网关等。这些信息是网络通信的基础,通常通过操作系统提供的API接口或者网络库来获取。 在易语言中,我们可以利用内置的系统调用或者扩展模块来访问这些信息。系统调用通常是直接调用操作系统内核的函数,例如在Windows系统中,可以使用"GetAdaptersInfo"或"GetAdaptersAddresses" API函数来获取网卡信息。而扩展模块则是一些由易语言开发者编写的,封装了特定功能的库,比如网络模块,它可以提供更易用的接口来获取网卡数据。 以下是一个简单的易语言代码示例,展示如何获取MAC地址: ```易语言 .整数型 .iResult .字符串型 .szAdapterInfo .动态数组 .adapterInfoList .结构体 .adapterInfo (.adapterInfoList) // 调用GetAdaptersInfo API .iResult = 系统调用.动态链接库("Iphlpapi.dll", "GetAdaptersInfo", .adapterInfo, .szAdapterInfo) // 检查API调用是否成功 如果 .iResult ≠ 0 那么 显示 "错误:" + 错误信息(.iResult) 结束程序 .否则 // 遍历获取的网卡信息 对于 每个 .adapterInfo 在 .adapterInfoList 如果 .adapterInfo.MacAddress ≠ "" 显示 "网卡名称:" + .adapterInfo.Description + ",MAC地址:" + .adapterInfo.MacAddress .结束 .结束 // 释放内存 内存释放.动态数组(.adapterInfoList) ``` 这段代码首先定义了所需的变量,然后调用了`GetAdaptersInfo` API获取网卡信息。如果API调用成功,程序会遍历获取的网卡信息,并显示每个网卡的名称和MAC地址。释放分配的内存以避免资源泄漏。 对于其他如IP地址、子网掩码等信息的获取,也可以采用类似的方法,只需调整API调用和解析结果的方式即可。易语言提供了丰富的内置函数和结构体,使得处理这类系统级任务变得相对简单。 在实际应用中,可能还需要考虑到多网卡的情况,以及动态IP分配等因素。开发者可以通过循环遍历所有获取到的网卡信息,或者根据特定条件筛选出需要的数据。同时,为了适应不同的网络环境,还应考虑错误处理和异常捕获,确保程序的健壮性。 易语言虽然语法简单,但在处理网络相关的任务时依然能提供强大的功能。通过学习和掌握这些基本的系统调用和模块使用,开发者可以轻松地构建出各种网络应用,包括但不限于网络监控、网络配置管理等。
2025-09-19 11:48:53 2KB 网络相关源码
1
-MATLAB_北京理工大学数值分析《数值计算方法》丁丽娟-数值实验作业(MATLAB)和课后作业.zip
2025-09-19 11:42:06 939KB
1
在Windows 7 64位操作系统中,使用VMware虚拟机安装VxWorks是一个常见的实践,这使得开发者可以在不改变主机系统的情况下,测试和开发基于VxWorks的操作系统。VxWorks是由Wind River Systems开发的一款实时操作系统(RTOS),广泛应用于航空航天、工业控制、通信设备等领域。以下是详细的安装步骤: 1. **VMware准备** - 确保已安装最新版本的VMware Workstation或Player。下载并按照官方指南进行安装。 - 检查Windows 7 64位系统是否已经启用硬件虚拟化技术。通常在BIOS设置中可以找到此选项,如Intel VT或AMD-V。 2. **创建虚拟机** - 打开VMware,点击“创建/打开虚拟机”。 - 选择“典型”安装,然后选择“安装程序光盘映像文件”并浏览到VxWorks的ISO镜像文件。如果没有,需要先下载VxWorks的安装ISO。 3. **配置虚拟机** - 设置虚拟机的“客户机操作系统”为“其他”,版本选择“其他32位Linux”。 - 分配足够的内存,通常2GB即可满足基本需求。 - 创建虚拟硬盘,可以选择动态分配或固定大小,根据个人硬盘空间和使用需求来设定。 - 确保虚拟网络适配器设置为“NAT”或“桥接模式”,以便虚拟机能够访问网络。 4. **安装VxWorks** - 启动虚拟机,ISO镜像会自动加载,开始VxWorks的安装过程。 - 跟随屏幕提示,选择语言、接受许可协议,设置用户名和密码。 - 在分区阶段,可以选择自动分区或者手动分区。如果是初次接触,推荐选择自动分区以简化流程。 5. **配置VxWorks开发环境** - 安装完成后,需要安装VxWorks的开发工具,如Wind River Workbench。这个通常包含在VxWorks的安装介质中,通过运行安装程序完成。 - 将虚拟机设置为共享文件夹,这样可以从主机系统方便地访问代码和编译结果。 - 配置Workbench与虚拟机的连接,确保能在主机上调试运行在虚拟机中的VxWorks应用程序。 6. **测试与开发** - 在Workbench中创建新项目,选择适当的VxWorks目标板和配置。 - 编写C/C++代码,利用Workbench的集成开发环境进行编译、链接和调试。 - 在虚拟机中运行VxWorks,通过Workbench进行远程调试,查看系统日志,进行性能分析等操作。 通过以上步骤,你就能在Windows 7 64位系统下的VMware环境中成功搭建VxWorks开发平台。这不仅提供了隔离的开发环境,也有助于提高工作效率,同时避免对主机系统的影响。在实际操作中,可能会遇到一些硬件兼容性或网络配置的问题,但通常都可以通过查阅VMware和VxWorks的文档或在线社区找到解决方案。记得随时更新软件版本,以获取最新的功能和修复的安全问题。
2025-09-18 20:33:33 1.87MB WIN7 VMware VxWorks
1
内容概要:本文详细介绍了雷达信号处理领域的运动补偿算法,重点讲解了两种包络对齐方法(相邻相关法和积累互相关法)和两种相位补偿方法(多普勒中心跟踪法和特显点法)。文中不仅解释了各方法的工作原理,还提供了相应的Matlab仿真代码示例。通过这些方法的应用,能够有效地消除目标平动运动对雷达成像的影响,提高成像准确性。此外,文章还展示了使用雅克42飞机实测数据进行运动补偿的效果,验证了算法的有效性。 适合人群:从事雷达信号处理的研究人员和技术人员,对运动补偿算法有兴趣的学习者。 使用场景及目标:适用于需要处理运动目标雷达信号的场合,如军事雷达、气象雷达等领域。主要目标是提高雷达成像质量,减少因目标运动带来的成像失真。 其他说明:文中提供的Matlab代码可以直接应用于实际项目中,但需要注意根据实际情况调整参数。同时,针对不同类型的雷达数据,可以选择合适的包络对齐和相位补偿方法组合,以达到最佳效果。
2025-09-18 19:44:04 136KB
1
西安电子科技大学的工程优化 期末考试原题 还有老师课后题答案 PTT 我所有的都在这了 走过路过不要错过啊 真的有 我保证 16年-19年的真题 真的! 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等还有课后题答案 西电工程优化-陈开周《最优化计算方法》历年原题以及PPT课件等
2025-09-17 15:35:38 27.87MB
1