基于LSTM神经网络的时间序列预测(Python完整源码和数据) 基于LSTM神经网络的时间序列预测(Python完整源码和数据) 基于LSTM神经网络的时间序列预测(Python完整源码和数据)
2022-11-25 12:26:55 108KB LSTM 神经网络 时间序列
用于时间序列分析,,或者股票分析,,AR模型
2022-11-25 10:07:53 1.17MB AR模型 时间序列分析 股票 matlab
这是 “LSTM时间序列预测任务” 案例中使用到的数据集,该案例我已在Blog中分享,欢迎下载该数据集。
1
基于GNN和ARIMA的时间序列预测(Python完整源码和数据包) 一个基于GNN和ARIMA的时间序列预测,包括数据预处理和预测方法。 基于GNN和ARIMA的时间序列预测(Python完整源码和数据包) 一个基于GNN和ARIMA的时间序列预测,包括数据预处理和预测方法。
2022-11-23 11:26:30 5KB GNN ARIMA 时间序列
非扫描版,清晰可读,时间序列专业书籍,纯英文版,不是中文文档哈。
2022-11-23 10:57:16 8.68MB 时间序列 arima regarima holt
1
MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测(完整源码和数据) 数据为单变量时间序列数据, 运行环境MATLAB2020b及以上, 程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
石油消耗 建立时间序列模型以预测美国住宅部门消耗的石油 在过去的45年中,美国的石油消费发生了巨大变化。 住宅部门的美国石油消费量(以每天千桶计)惊人地下降。 这里提取了多年趋势和季节性成分,以更好地了解石油消费的变化。 此外,使用1984年1月至2018年9月的数据构建了时间序列模型,并使用2018年10月至2019年9月的数据来测试哪种模型的预测效果更好。 用于时间序列分析的数据是“ MER_T03_07A.csv”,可从美国能源信息管理局(eia)( )下载。
2022-11-22 20:12:56 2.13MB HTML
1
MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(完整源码和数据) 卷积门控循环单元时间序列预测,数据为单变量时间序列数据,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2020b及以上,运行主程序即可。
图神经网络 | Python实现LSTM-GNN时间序列预测 LSTM-GNN用于病人的结果预测:一个混合模型,结合了用于提取时间特征的长短期记忆网络(LSTM)和用于提取病人邻域信息的图谱神经网络(GNN)。 关于预测重症监护室(ICU)病人结果的工作主要集中在生理时间序列数据上,基本上忽略了诊断和药物等稀疏数据。当它们被包括在内时,它们通常是在模型的后期阶段被串联起来的,这可能难以从更罕见的疾病模式中学习。通过在图中连接类似的病人,将诊断作为关系信息加以利用。 LSTM-GNNs在eICU数据库的住院时间预测任务中的表现优于仅有LSTM的基线。利用图神经网络从相邻的病人病例中提取信息是一个很有前途的研究方向,在电子健康记录的监督学习性能方面产生了切实的回报。
2022-11-21 11:26:19 163KB 图神经网络 LSTM-GNN LSTM GNN
1
第二章 时间序列预测与回归分析模型第2页指同一变量按发生时间的先后排列起来的一组观察值或记录值。例如:1990-2008年我国国内工业生产总值;某类型的汽车20
2022-11-20 23:42:27 1MB 时间序列
1