python网络编程,适用于网络编程方向的同学,书中采用的是python3的代码。
2024-08-22 10:10:48 76.67MB python python 网络编程 python
1
[免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧 ------------------------------------------------------------------------------------------------------------------- [免费]2023年数学建模国赛b题前三问Word完整版(自己团队写的,市面上找不到的) 代码用的是Python编写 各个步骤非常详细 快来看看吧
2024-08-22 07:49:23 523KB python 数学建模 word
1
securecrt自动巡检一台网络设备的python脚本。将网络设备管理ip地址写入脚本的sessionsArray列表内。此脚本通过securecrt的会话日志保存,保存巡检结果。巡检的结果执行了sys和dis cu两个命令,如还有其他巡检将命令加入send就可以。 此脚本适用于网络设备、服务器等各种网络终端。 如需保存txt、excel,或者其他过滤、筛选、邮件告警等更多、更完善功能可以私信我。
2024-08-21 23:13:03 1KB python
1
通过整数编程进行多机器人路径规划(提交SoCG 2021) 这是塔夫茨大学一个实施项目,是我们对提交的一部分。 我们对其他算法的探索。 该项目在Yu和LaValle的“图上的最佳多机器人路径规划:完整算法和有效启发式算法” 实现了最小化跨机器人多运动计划算法。 根据SoCG挑战的要求,我们添加了其他约束来处理连续的网格运动。 正在安装 该项目依赖于Python 3.8,Gurobi 9.1和其他一些依赖项。 Gurobi可以一起并且需要许可证 。 其他依赖项可以通过pip install -r requirements.txt 。 跑步 求解器在小型实例(最大25x25)上效果最佳。 要为最小实例生成解决方案,请运行 python solve_instance.py --db cgshop_2021_instances_01.zip --name small_000_10x10_20_
2024-08-21 16:14:39 8KB Python
1
【HZHY-AI300G智能盒试用连载体验】系列文章的代码,利用RK3588实现YOLOv8视频检测,并将车流检测结果上传华为IoTDA。 适合人群:有初步编程经验的程序员,人工智能技术爱好者。 能学到什么:①RK3588的NPU编程技术;②YOLOv8的图像检测技术;③MQTT客户端的实现;④华为IoTDA的接入技术。 编程语言:Python 注意事项:程序中MQTT的一些参数被用XXXX代替了,使用时请用真实的华为IoTDA接入参数代替。
2024-08-21 15:27:18 2.18MB 编程语言 人工智能 python
1
在计算机视觉领域,OpenCV(开源计算机视觉库)是一个广泛使用的工具包,它提供了许多用于图像处理和分析的函数。本篇文章将详细讨论OpenCV 2.4.10版本中新增的`connectedComponentsWithStats`函数,以及与其相关的连通区域标记(Connected Component Labeling)和源码解析。 `connectedComponentsWithStats`函数是OpenCV中用于检测图像中的连通组件,并计算每个组件的一些统计信息。在图像处理中,连通组件是指在二值图像中,像素值相同的连续区域。例如,在一个物体分割问题中,我们可能希望将背景和前景物体分别标记为不同的类别。`connectedComponentsWithStats`就派上了用场,它不仅能找出所有连通组件,还能提供每个组件的尺寸、位置等信息。 我们需要理解连通区域标记的基本概念。这是一种图像分析技术,用于将图像中的每个连通部分赋予一个唯一的标识符(标签)。OpenCV中的`connectComponent`函数就是实现这一功能的基础版本,它返回的是各个连通组件的标签数组,但不提供组件的统计信息。 而`connectedComponentsWithStats`则更进一步,除了返回组件标签外,还计算每个组件的以下统计信息: 1. **面积**:连通组件内像素的数量。 2. **左上角坐标**:连通组件的最小边界框的左上角像素坐标。 3. **右下角坐标**:连通组件的最小边界框的右下角像素坐标。 4. **质心**:连通组件的重心,根据像素的位置和权重计算得出。 5. **宽度和高度**:连通组件边界框的尺寸。 这些统计信息对于后续的图像分析和处理任务非常有用,比如物体检测、计数、形状分析等。 在OpenCV 2.4.10版本的源码中,`connectedComponentsWithStats`的实现通常基于高效的算法,如基于深度优先搜索(DFS)或宽度优先搜索(BFS)的连通组件遍历。这些算法可以有效地遍历图像,同时收集必要的统计信息。源码阅读可以帮助我们理解算法的工作原理,这对于优化代码性能或实现自定义功能非常有帮助。 在实际应用中,`connectedComponentsWithStats`常被用于图像分割后的后处理步骤,比如在自动驾驶中识别行人或车辆,或者在医学成像中区分肿瘤和其他组织。通过分析连通组件的统计信息,我们可以判断组件的大小、形状和位置,从而做出更准确的决策。 OpenCV的`connectedComponentsWithStats`函数是进行图像分析和处理时不可或缺的一部分,它结合了连通区域标记和统计信息计算,极大地扩展了我们对图像数据的理解和应用。深入研究这个函数的源码和应用实例,对于提升我们的计算机视觉技能至关重要。
2024-08-21 10:55:56 16KB OpenCV 连通区域标记 源码
1
Python是一种强大的编程语言,尤其在数学建模领域中,它凭借其简洁的语法、丰富的库支持和高效的数据处理能力,成为许多科学家和工程师的首选工具。"Python数学建模算法与应用"是一门课程,旨在教授如何利用Python解决实际的数学问题,并进行模型构建和分析。课件和习题解答提供了学习者深入理解和实践这些概念的平台。 在Python数学建模中,主要涉及以下几个关键知识点: 1. **基础语法与数据类型**:Python的基础包括变量、条件语句、循环、函数等,以及各种数据类型如整型、浮点型、字符串、列表、元组、字典等。理解这些是进一步学习的基础。 2. **Numpy库**:Numpy是Python科学计算的核心库,提供高效的多维数组对象和矩阵运算功能。在数学建模中,数组和矩阵操作是常见的,Numpy简化了这些操作。 3. **Pandas库**:Pandas用于数据清洗、整理和分析,它的DataFrame结构非常适合处理表格数据。在建模过程中,数据预处理至关重要,Pandas能帮助我们处理缺失值、异常值和转换数据格式。 4. **Matplotlib和Seaborn**:这两个库主要用于数据可视化,它们可以绘制出各种图表,帮助我们理解数据分布、趋势和关系,对于模型的理解和验证十分关键。 5. **Scipy库**:Scipy包含了许多科学计算的工具,如优化、插值、统计、线性代数和积分等。在数学建模中,这些工具用于解决复杂的计算问题。 6. **Scikit-learn库**:Scikit-learn是机器学习库,提供了各种监督和无监督学习算法,如回归、分类、聚类等,对于预测和分类问题的建模非常实用。 7. **数据分析与模型选择**:在数学建模中,我们需要根据问题选择合适的模型,例如线性回归、逻辑回归、决策树、随机森林、支持向量机等,并通过交叉验证和网格搜索等方法优化模型参数。 8. **算法实现**:课程可能涵盖了各种数学模型的Python实现,如微分方程组的数值解法、最优化问题的求解算法(梯度下降、牛顿法等)。 9. **习题解答**:课后的习题解答部分将帮助学生巩固所学,通过实际操作来提升理解和应用能力。 10. **课件**:课件可能包含讲解、示例代码和案例分析,帮助学生系统地学习Python数学建模的全过程。 在"Python数学建模算法与应用"的课程中,学生不仅会学习到Python的基本语法和高级特性,还会接触到实际的数学建模问题,如预测、分类、最优化等问题的解决方案。通过kwan1117这个文件,学生可以查看课件内容,解答习题,进一步提升自己的技能。在实践中不断探索和掌握Python在数学建模中的应用,将有助于培养出解决实际问题的能力。
2024-08-21 10:14:34 81.18MB
1
这段代码主要用于从网站 “https://yesmzt.com” 上抓取并下载图片。它使用了以下技术: 请求库(Requests):用于发送 HTTP 请求到网站并获取响应。 XPath 和 lxml 库:用于解析 HTML 文档并提取所需的数据。 AES 加密和解密:用于处理网站上的加密数据。这部分代码使用了 Crypto.Cipher 库中的 AES 模块和 Crypto.Util.Padding 库中的 unpad 函数。 哈希函数(Hashing):用于生成特定的密钥,这部分代码使用了 hashlib 库中的 md5 函数。 Base64 编码和解码:用于处理二进制数据,这部分代码使用了 base64 库。 代码的主要流程如下: 首先,它会获取特定页面上的所有图片 ID(get_id_list 函数)。 然后,对于每个 ID,它会发送一个请求到服务器以获取加密的图片 URL 数据(get_img_url_list 函数)。 这些加密数据会被解密(decrypt 函数),得到实际的图片 URL 列表。 最后,代码会下载每个 URL 对应的图片并保存到本地
2024-08-20 16:03:53 4KB javascript python爬虫 aes
1
本实战案例涉及使用Python编写一个爬虫程序,用于批量爬取B站(哔哩哔哩)上的小视频。这个案例将使用到requests库来发送HTTP请求,以及BeautifulSoup库来解析网页内容。 适用人群 Python开发者:希望提高网络爬虫的开发技能。 数据分析师:需要从B站获取视频数据进行分析。 视频内容创作者:可能需要收集B站上的小视频用于研究或灵感来源。 使用场景及目标 技术学习:通过实际案例学习网络爬虫的开发。 市场研究:收集B站上的小视频数据进行市场或趋势分析。 内容分析:分析小视频的特点,如长度、风格等。 其他说明 遵守法律法规:在进行网络爬虫操作时,必须遵守相关法律法规,尊重版权和目标网站的robots.txt文件。 网站结构变化:网站的HTML结构可能会发生变化,导致爬虫失效,需要定期维护和更新。 请求限制:为了避免给B站服务器造成过大压力,应适当控制请求频率,并考虑使用代理IP。
2024-08-20 13:34:47 1.51MB python 爬虫
1
这时作者自己在24年电赛e题时使用的原版代码,里面的注释已经比较详细了,基本可以完美的滤波和识别。因为硬件之间的差异,我的硬件openmv在识别时有很大的噪音,为了去除噪音,我使用的各种滤波和识别的方法进行结合,使得硬件和环境在比较恶劣的情况下也可进行识别。
2024-08-20 12:09:39 24KB python openmv
1