利用大数据与人工智能分析预测金融市场_huanLing
2024-10-29 16:48:18 12.07MB
1
"百度贴吧移除粉丝和关注TA源码-易语言" 涉及的知识点主要集中在两个方面:易语言编程和网络编程。易语言是中国本土开发的一种简单易学的编程语言,其设计理念是“易学易用”,旨在降低编程的门槛。而网络编程则是指通过网络进行数据传输和交互的编程技术。 易语言是一种基于事件驱动的编程环境,它使用自然语言作为编程语法,使得编程过程更为直观和简洁。在本源码中,开发者可能利用易语言的API函数或自定义模块来实现对百度贴吧接口的调用,进行数据交互。易语言提供了丰富的内置函数和控件,可以方便地处理网络请求、解析返回的JSON数据,以及实现与用户的界面交互。 网络编程在本源码中的具体应用主要是与百度贴吧的API进行交互。百度贴吧是百度公司旗下的一款社交平台,用户可以在上面创建主题、发帖、评论,同时可以关注他人并积累粉丝。要实现“移除粉丝和关注TA”的功能,需要熟悉HTTP协议,理解GET和POST请求的工作原理,以及如何构造和发送这些请求。开发者可能需要用到的网络请求库或者易语言的网络组件来实现这些功能。 获取用户信息,包括关注的用户列表和自己的粉丝列表,通常需要发送HTTP请求到百度贴吧的特定接口,接收返回的JSON数据。JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。解析JSON数据后,可以获取到关注者和被关注者的ID等关键信息。 执行“移除粉丝”操作,可能涉及到向百度贴吧服务器发送一个解除关注的POST请求,携带相应的参数,如被取消关注的用户ID。这个请求可能需要登录态信息,如Cookie或Token,以验证操作者的身份权限。 界面展示和用户交互是另一个重要环节。易语言的窗口程序设计可以创建用户友好的界面,用于显示操作进度、提示信息,以及接收用户的确认或取消操作。用户通过点击按钮触发相应功能,源码会根据用户的操作执行相应的网络请求。 "百度贴吧移除粉丝和关注TA源码"结合了易语言的编程技巧和网络编程知识,涵盖了网络请求、数据解析、用户界面设计等多个领域。通过学习和理解这段代码,不仅可以提升易语言的编程能力,还能加深对网络编程和API接口使用理解,对于想要从事网络应用开发的程序员来说,是一份有价值的参考资料。
2024-10-29 16:24:15 679KB 网络相关源码
1
《基于Spark的外卖大数据平台分析系统实现》 在当今信息化社会,大数据已成为企业决策的关键因素。尤其是在外卖行业中,海量的订单、用户行为、地理位置等数据蕴含着丰富的商业价值。本项目将详细介绍如何利用Apache Spark构建一个高效的数据分析系统,对外卖大数据进行深度挖掘,为业务优化和市场策略提供有力支持。 Apache Spark是大数据处理领域的一款强大工具,以其内存计算、高并发和易用性等特性,被广泛应用于实时和离线数据分析。在构建外卖大数据平台分析系统时,我们首先需要理解Spark的基本架构和核心组件。Spark的核心包括Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)以及GraphX(图计算)。这些组件协同工作,可实现数据的存储、处理、查询和模型训练等多元化功能。 1. Spark Core:作为基础框架,负责任务调度、内存管理、集群通信等。它提供了弹性分布式数据集(Resilient Distributed Dataset, RDD),是Spark处理数据的基本单元,具备容错性和并行计算能力。 2. Spark SQL:结合了SQL查询和DataFrame/Dataset API,使得开发人员可以方便地在SQL和程序化API之间切换,处理结构化和半结构化数据。 3. Spark Streaming:用于实时数据流处理,通过微批处理方式实现低延迟的数据处理。对于外卖平台,这可以用于实时监控订单状态、用户行为等。 4. MLlib:Spark内置的机器学习库,提供多种算法,如分类、回归、聚类、协同过滤等,支持模型评估和调优,为外卖平台的个性化推荐、热点预测等提供可能。 5. GraphX:用于处理图数据,可以用来分析用户关系网络、商家关联等。 在搭建外卖大数据平台时,我们需要考虑以下几个关键步骤: 1. 数据采集:从各种来源(如订单系统、用户APP、第三方API等)收集数据,形成数据湖。 2. 数据预处理:清洗数据,处理缺失值、异常值,进行数据转换,使其适用于后续分析。 3. 数据存储:使用Hadoop HDFS或Spark原生的分布式文件系统(如Alluxio)存储大量数据。 4. 数据处理:使用Spark SQL进行数据查询和分析,Spark Streaming处理实时数据流,如实时订单跟踪。 5. 数据挖掘与建模:利用MLlib进行特征工程、模型训练和验证,如用户画像构建、需求预测等。 6. 结果可视化:通过Tableau、PowerBI等工具将分析结果以图表形式展示,便于决策者理解。 7. 系统优化:不断调整Spark配置,如分区策略、executor内存大小等,以提高性能和资源利用率。 基于Spark的外卖大数据平台分析系统能够高效处理海量数据,实现快速响应和深度洞察,从而助力外卖行业的精细化运营,提升用户体验,驱动业务增长。
2024-10-29 16:05:22 655KB spark 数据分析
1
(1)Python爬虫进行数据爬取; (2)搭建Hadoop分布式集群; (3)Hive数仓存储原始数据; (4)Spark整合Hive完成数据分析,结果存入MySQL; (5)Spring Boot+ECharts进行数据可视化。
2024-10-29 16:01:36 7.37MB hadoop spark 数据分析
1
在本项目中,我们主要探讨的是如何利用Apache Spark进行大规模咖啡销售数据的分析与可视化。Apache Spark是一个分布式计算框架,以其高效、易用和适用于大数据处理的特性而广受欢迎。SparkRDD(弹性分布式数据集)是Spark的核心数据结构,它提供了一种抽象的数据并行计算模型。 我们要理解Spark的工作原理。Spark采用内存计算,相比于Hadoop MapReduce的磁盘存储,大大提高了数据处理速度。SparkRDD是Spark对数据的基本抽象,它将数据分布在集群的各个节点上,可以执行各种并行操作。在我们的案例中,SparkRDD将用于处理咖啡销售数据,如统计销售额、销量等关键指标。 项目环境搭建方面,IDEA是一个流行的Java集成开发环境,用于编写Spark程序;Hadoop作为大数据处理的基础平台,提供了分布式文件系统HDFS,用于存储咖啡销售数据;而Python则是Spark常用的一种编程语言,用于编写数据处理逻辑。 在数据处理阶段,我们将首先使用Python读取Hadoop HDFS上的咖啡销售数据,然后通过SparkContext创建SparkRDD。接着,我们可以运用一系列的转换和行动操作,例如`map`、`filter`、`reduceByKey`等,对数据进行预处理,提取出我们需要的信息,比如按地区、按时间、按咖啡种类等维度进行分类统计。 数据分析完成后,我们将进入可视化阶段。这可能涉及使用Python的matplotlib、seaborn或者pandas库,生成图表以直观展示分析结果。例如,我们可以创建条形图来展示各地区的销售排名,使用折线图展示销售趋势,或者使用热力图分析不同时间段的销售情况。可视化可以帮助我们更好地理解数据背后的模式和趋势,从而为业务决策提供依据。 此外,项目提供的源码和文档是学习的关键。源码能让我们看到具体的实现过程,了解如何在实际项目中应用Spark进行数据处理。文档则会解释代码的逻辑和功能,帮助初学者理解各个步骤的意图,快速掌握Spark数据分析的技巧。 总结来说,这个项目涵盖了大数据处理的基础架构(Idea、Hadoop、Spark),重点在于使用SparkRDD进行数据处理和分析,以及使用Python进行数据可视化。对于想要提升大数据处理能力,尤其是熟悉Spark的开发者,这是一个很好的实践案例。通过深入学习和实践,你可以进一步理解大数据分析的流程,提升自己在大数据领域的专业技能。
2024-10-29 16:00:59 356KB spark 数据分析
1
这是一个基于Spring Cloud和Vue.js构建的后台管理系统的源码压缩包。这个系统采用了现代微服务架构,利用Spring Cloud的强大功能来实现服务发现、负载均衡、配置中心等关键特性,同时结合前端Vue.js框架,提供了高效的用户界面交互和响应式设计。 Spring Cloud是Spring官方推出的微服务开发工具集,它为开发者提供了在分布式系统(如配置管理、服务发现、断路器、智能路由、微代理、控制总线、一次性令牌、全局锁、领导选举、分布式会话、集群状态)中快速构建一些常见模式的能力。在本项目中,Spring Cloud可能包括了Eureka(服务注册与发现)、Zuul(API网关)、Hystrix(断路器)和Config(配置中心)等组件。 Vue.js是一款轻量级的前端JavaScript框架,以其简洁的API、高效的虚拟DOM和易上手的特点受到开发者喜爱。在这个后台管理系统中,Vue.js可能被用于构建用户界面,包括路由管理(vue-router)、状态管理(vuex)以及各种UI组件库(如Element UI或Ant Design Vue)的集成,以实现数据驱动的页面交互和动态渲染。 文件名为"code"的子文件夹可能包含了整个项目的源代码结构。通常,一个Spring Cloud项目会包含多个子模块,每个模块对应一个微服务,如用户服务、商品服务、订单服务等。每个服务通常都有自己的启动类、业务逻辑、数据库模型以及与其它服务的交互接口。Vue.js部分则可能包含src目录,下有components(组件)、views(视图)、router(路由)、store(状态管理)等子目录,以及main.js作为入口文件。 在开发和运行这个系统时,开发者需要熟悉Java后端开发,包括Spring Boot、Spring Cloud的相关组件,以及MyBatis或JPA等持久层框架。前端开发则需要掌握Vue.js的基本语法和生态系统,了解如何使用axios进行HTTP请求,以及如何组织和管理组件化的应用。 对于部署和测试,开发者可能会使用Docker容器化技术,将每个微服务打包成独立的容器,然后通过Docker Compose或Kubernetes进行集群部署。同时,单元测试和集成测试也是保证代码质量的重要环节,可以使用JUnit和Mockito进行后端测试,Jest或Mocha配合Vue Test Utils进行前端测试。 这个项目涵盖了微服务架构、前后端分离、分布式系统等多个领域的知识,对于想要深入理解并实践这些技术的开发者来说,是一个很好的学习和研究资源。
2024-10-29 15:50:30 138KB spring cloud vue.js
1
一个用于VC串口开发的工具类。简单实用。做串口开发的童鞋不用再头疼了,工具类可以直接使用。注意是vc++版本
2024-10-29 10:40:18 8KB windows串口
1
抖音seo源码 ,短视频seo优化源码
2024-10-29 10:01:36 3.04MB 源码软件
1
基于Java Web的校园二手交易平台是一个利用Java EE技术开发的在线市场,旨在为在校师生提供一个安全、便捷的买卖闲置物品的场所。该平台采用Spring框架进行业务逻辑处理和事务管理,使用Spring MVC实现前端请求与后端服务的解耦,以及MyBatis或Hibernate作为ORM工具与数据库交互。主要功能包括用户注册与登录、商品浏览、发布与编辑二手商品、在线沟通、交易管理、订单处理、评价系统和后台管理等。通过友好的用户界面和直观的操作流程,校园二手交易平台不仅促进了校园内部资源的循环利用,减少了浪费,而且为计算机专业学生提供了一个实践Web开发、数据库管理和网络通信技术的项目机会。
2024-10-29 09:30:10 9.17MB 毕业设计 java
1
1.软件的主要功能:可以将通达信主附图指标源码,一键自动化改写成选股指标,预警指标,可以省去了大量的手动人工改写操作,只需要你写一个选股表达式,就直接可以用程序代码去帮你操作,得到同样的结果。10秒不到就可以帮你快速生成选股公式。 让改写选股器不再求人,只需一点点指标编写语法即可!!一个小白也能上手的神器 2.软件的使用步骤: A.将复制的源码,粘贴到黑色源码区(点复制粘贴处)即可 B.把写好的选股表达式粘贴到软件如上图的位置 C.最后点击一键改写选股器即可(按照你写的条件表达式,提取生成对应语句) D.复制源码——(检测指标是否改写正确?)把改好的指标源码,复制到通达信里面即可选股使用。测试一下,看能否通过,以及是否与原指标的选股输出信号是一致的,2个条件都满足说明改好了。(经测试大多数指标源码是可以改写的,目前没有还没有发现不能改写的)。 选股表达式构成:变量名称+英文冒号+表达式语句+英文分号。 源码粘贴处:把指标源码自动粘贴到指定位置,即黑色的源码区。 一键清空:清空的是黑色源码区,和修好的青色源码区,方便改写下个不同源码的指标。 复制源码:是复制改写好的指标源
2024-10-29 00:59:16 2.15MB
1