内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
传统的单脉冲测向方法主要有3种,分别是半阵法、加权法和和差比幅法。在了解单脉冲测向之前,首先要知道确知波束形成,确知波束形成就是设计一组权值,使得对各个阵元接收到的信号进行加权求和之后,形成一种空间滤波,选择性的接收期望方向的信号而抑制其他方向的信号。在实际情况中,前端处理得到的波束指向角​ 不一定等于 ,但真实角度一般出于波束的3dB带宽以内。因此我们就需要一种方法在已知确知波束指向角的情况下测量期望信号的真实方向。单脉冲测角就是用于解决该问题。通常情况下,单脉冲测角需要在阵列的输出端分别形成和波束和差波束,其中和波束要求在波束指向处形成主瓣增益,而差波束则要求在波束指向处形成零陷。
2025-03-27 17:27:41 1.98MB matlab
1
雷达信号处理是雷达技术中的一个核心领域,它涉及从雷达系统接收的信号中提取有用信息的各种方法和技巧。随着雷达技术的发展,对信号处理的要求越来越高,这就要求研究者和工程师必须掌握信号处理的基础知识,以确保从雷达回波中准确无误地获取目标信息。《雷达信号处理基础》第二版的出版为这一领域提供了系统的学习资料。 第二版书籍由Mark A. Richards博士编写,他是乔治亚理工学院的教师,并在雷达信号处理领域有着深入的研究。此书旨在为读者提供雷达信号处理的基础知识,书中详细介绍了雷达信号处理的核心概念、原理和技术。书籍涵盖了从基本的雷达方程,到复杂的信号检测、估计和分类方法,为读者构建了一个全面的知识框架。 雷达信号处理涵盖了多个关键领域,包括信号检测、信号估计、目标跟踪和合成孔径雷达技术等。信号检测是指如何区分和识别目标信号与噪声信号的过程,这一过程对于雷达的有效运作至关重要。信号估计则关注于从含有噪声的信号中提取目标参数的技术,如距离、速度、角度等。目标跟踪是利用雷达连续测量数据来估计和预测目标运动轨迹的过程。合成孔径雷达技术是一种特殊的雷达技术,能够生成高分辨率的图像,常用于地面成像和地形测绘。 在雷达系统中,信号处理也包括对信号进行适当的变换,例如傅里叶变换、小波变换等,以改善信号的质量和可提取的信息量。此外,信号处理还包括对多径效应的处理,这是指雷达信号在到达接收器前可能经过多个路径的情况,这种效应可能导致信号失真。 为了更精确地处理和分析信号,雷达信号处理工程师们经常使用各种数学工具和算法,如卡尔曼滤波器、维纳滤波器等。这些工具能帮助工程师从复杂的信号中提取关键信息,并减少噪声的影响。随着计算机技术的发展,数字信号处理在雷达系统中变得越来越重要。数字信号处理器能实现复杂的算法,提高雷达的性能和可靠性。 雷达信号处理不仅需要理论知识,还需要大量的实践和实验,通过不断测试和优化,才能最终设计出符合实际应用需求的雷达系统。因此,实践环节也是《雷达信号处理基础》第二版中不可或缺的一部分。 本书的读者对象包括雷达系统工程师、信号处理领域的研究人员和学生等。通过阅读本书,他们可以全面地了解雷达信号处理的各个方面,掌握其理论基础和实用技术,从而在实际工作中发挥重要的作用。此外,由于雷达技术在军事、民用和科研领域都有广泛的应用,因此,掌握雷达信号处理的基础知识对于这些领域的发展同样具有重要意义。 本书的版权归属于McGraw-Hill Education出版社,并且在版权法的保护下,未经出版社允许,不得私自复制、分发或者存储该出版物的任何部分。ISBN 978-0-07-179833-4和MHID 0-07-179833-1是该书的电子版和印刷版的唯一识别编号。 本书的电子版由Cenveo® Publisher Services转换而来,eBook版本使得读者能够在计算机、平板电脑或智能手机等设备上阅读。McGraw-Hill Education的电子书以数量折扣的方式提供,可用于作为奖金、销售促销或企业培训项目。如需联系代表,请访问www.mhprofessional.com。 本书的使用受到一定的限制条款约束,使用时需遵守这些条款。虽然本书提供了可靠的资料来源,但是McGraw-Hill Education并不能保证书中的信息完全准确、充分或完整,对于使用本书信息所导致的任何错误、遗漏或结果,McGraw-Hill Education也不负责任。 《雷达信号处理基础》第二版以其系统性和完整性,是学习和应用雷达信号处理不可多得的参考资料。通过阅读本书,可以为从事雷达相关领域工作的专业人士提供深入的理论支持和实践指导。
2025-03-27 11:30:03 29.38MB
1
现代数字信号处理 皇甫堪课件
2025-03-27 01:14:18 7.15MB 数字信号处理
1
连续波雷达信号处理,尤其是针对频率调制连续波(FMCW)合成孔径雷达(SAR)的技术,是一个高度专业化的领域,涉及雷达信号处理的多个方面。FMCW技术与SAR技术的结合,导致了高分辨率的轻量级、低成本成像传感器的出现。这些系统在航空地球观测领域具有重要的应用价值,尤其是在需要频繁访问、低成本或小型化设备的情况下。 FMCW雷达技术具备一些独特的优势,比如持续的低发射功率,这意味着相对于脉冲雷达系统来说,FMCW雷达更加经济且体积更小。然而,FMCW传感器的使用受到发射信号中非线性现象的限制,这会降低对比度和距离分辨率,特别是在需要高分辨率长距离应用的情况下。 为了解决这一问题,本资料提出了一个新颖的信号处理解决方案,它可以解决整个距离剖面的非线性问题。该方案摒弃了在脉冲雷达算法中通常使用的“停止-走”近似法,在某些情况下,这种近似法在FMCW SAR应用中是无效的,因此必须考虑扫频过程中的运动。论文中提出了不使用“停止-走”近似的FMCW SAR信号模型的解析发展,并将所提出的方法应用于条带映射、聚光和数字波束成形SAR操作模式。这些算法通过处理在代尔夫特科技大学建造的演示系统上收集的真实FMCW SAR数据进行了验证。 在这篇文章中,作者Adriano Meta、Peter Hoogeboom和Leo P. Ligthart对于FMCW SAR系统中的非线性问题提供了一种新的解决方案,并且展示了如何不依赖于传统“停止-走”近似来对FMCW SAR信号进行精确建模。这对于SAR技术的发展具有重要意义,因为它允许更为准确地处理通过SAR系统获得的数据,并最终生成更为清晰、分辨率更高的图像。 FMCW SAR系统的另一个关键特点是在条带映射、聚光模式以及数字波束成形技术中的应用。条带映射模式下,雷达沿着飞行方向平行于地面进行扫描;聚光模式则是雷达波束指向特定区域以获得更高分辨率的图像;数字波束成形则是利用数字信号处理技术来控制波束的方向性,从而提高SAR系统的性能。这些技术在提高成像质量、增强探测能力等方面有着不可替代的作用。 论文中提到的多发射机/多接收机架构,能够利用多个接收机来收集信号,从而提升数据收集效率和成像质量。这对于飞行器搭载的SAR系统来说尤其重要,因为它能够确保在移动中实现连续稳定的信号接收和成像。 除了上述的技术细节,论文还介绍了一些关键词,如多普勒频率调制连续波(FMCW)、非线性校正、合成孔径雷达(SAR)校正和频率校正等。这些关键词不仅体现了FMCW SAR信号处理的核心概念,还揭示了该领域研究的复杂性和前沿性。 连续波雷达信号处理,特别是针对FMCW SAR的研究,不仅在技术上具有创新性和实用性,而且在航空地球观测、环境监测、军事侦察等多个领域都有着广泛的应用前景。随着技术的不断进步,我们可以预见,该领域将会出现更多突破性的进展。
2025-03-26 17:08:07 1.71MB FMCW 信号处理 合成孔径雷达
1
Unity3DTiles,b3dm glb加载,处理
2025-03-26 16:12:50 21.04MB
1
随着网上购物的盛行,淘宝、京东、拼多多等互联网商业巨头也展开了激烈的竞争,其中市场竞争最为激烈。收集商品、评论及销量数据以及对各种商品及用户的消费场景进行分析成了必不可少的环节。然而传统的人工收集并整理数据显然效率不足以满足当下各大公司以及其他相关产业对这些数据的需要。近年来Python爬虫技术的逐渐成熟,给网购数据收集并整理带来了极大的便利。基于爬虫技术获取的数据设计并实现基于Python的电商产品数据处理与可视分析系统。 该系统具有数据采集,数据清洗,数据分析,数据可视化等功能,使用Python爬虫进行数据采集,通过Pandas进行数据清洗,最后利用Seabor进行对商品销量、价格、品牌等数据的可视化与统计,进而实现Python的数据分析系统。
2025-03-26 15:44:40 42KB python
1
在VB(Visual Basic)编程环境中,获取汉字拼音的第一个字母是一项常见的字符处理任务,尤其是在处理中文字符串、搜索引擎优化或建立拼音索引时。VB获取汉字拼音的首字母功能可以帮助开发者实现这些需求。本压缩包文件“VB获取汉字拼音的第一个字母完整代码.rar”提供了完整的示例代码,包括一个实例,便于开发者理解和应用。 我们需要了解汉字与拼音之间的关系。汉字是由不同的部首和声母、韵母组成的,而拼音是用拉丁字母来表示汉字发音的一种方式。在VB中,我们通常需要获取汉字的声母部分作为首字母。例如,“中国”对应的拼音是“Zhongguo”,其首字母为“ZG”。 要实现这个功能,VB代码通常会依赖于预先构建好的汉字到拼音的映射表或者使用第三方库,如Microsoft的“内码转换服务”(MSSpellChecker)。在这个压缩包的实例中,可能是通过一个内部函数或模块来实现的,它将汉字转换为拼音,并提取首字母。 以下是一个简单的示例,展示如何在VB中实现这个功能: ```vb Function GetPinyinFirstChar(char As String) As String ' 假设这里有一个字典或数组,存储了汉字到拼音的映射 Dim pinyinMap As New Dictionary(Of String, String) ' 填充字典... If pinyinMap.ContainsKey(char) Then Dim pinyin As String = pinyinMap(char) Return pinyin.Substring(0, 1).ToUpper() Else ' 对于未在字典中的字符,可能返回特殊值或抛出异常 Return "未知" End If End Function ``` 在这个例子中,`GetPinyinFirstChar`函数接收一个汉字,然后在预定义的映射字典中查找对应的拼音。找到后,返回拼音的第一个字母,并转换为大写。如果汉字不在映射表中,函数可能返回一个特定的值(如"未知")或者抛出异常。 此外,为了提高性能和准确性,开发者可能还会考虑使用更复杂的方法,如利用Windows API调用来访问系统内置的汉字转拼音功能,或者使用.NET Framework提供的`System.Speech`命名空间来实现语音识别服务,从而获取汉字的准确拼音。 这个压缩包提供的示例代码应该包含了如何在VB环境中高效地实现汉字转拼音首字母的功能,对于需要处理大量汉字数据或进行中文信息检索的项目来说,这是一个非常实用的工具。开发者在使用时应仔细阅读代码,理解其实现原理,并根据实际需求进行必要的修改和优化。
2025-03-26 01:32:32 5KB VB源码-字符处理
1
在VB6.0编程环境中,有时我们需要处理汉字并获取其拼音首字母,这在创建基于拼音的唯一标识、搜索优化或排序等方面非常有用。标题提到的"VB6.0 获取汉字拼音简码(首字母).rar"是一个压缩包,其中包含VB6源码,用于实现这一功能。在描述中,作者指出此代码可以用于获取汉字的拼音简码,即首字母,并且在实际应用中,如编号或账号的生成,这种功能非常实用。 在VB6中实现汉字到拼音首字母的转换通常涉及到字符串处理和特定的汉字编码转换。以下是一些关键知识点: 1. **汉字编码**:汉字在计算机中的表示通常有多种编码方式,如GBK、GB2312、Unicode等。在处理汉字时,首先需要确保正确解码汉字字符串。 2. **拼音库**:获取汉字拼音需要一个包含汉字与对应拼音数据的库。这可能是一个文本文件、数据库或内置于程序的字典。在VB6中,如果内置库不可用,可能需要引入第三方库或自行创建。 3. **字符串分割与处理**:在VB6中,`Split`函数可以用来分割字符串,`Mid`和`Left`函数用于提取字符串的子部分。在获取拼音首字母时,需要对每个汉字进行处理,分割出对应的拼音。 4. **大小写转换**:根据需求,你可能需要将首字母转换为大写或小写,VB6提供了`UCase`和`LCase`函数。 5. **异常处理**:某些汉字可能没有对应的拼音,或者在处理过程中可能出现错误。因此,良好的错误处理机制是必要的,可以使用`On Error`语句来捕获并处理这些情况。 6. **界面设计**:如果程序具有用户界面,那么需要考虑如何展示结果,例如使用消息框(`MsgBox`),或者设计一个简单的用户界面来输入和显示拼音。 7. **性能优化**:对于大量汉字的处理,性能优化很重要。可以考虑使用数组存储已转换的拼音,避免重复计算,或者利用多线程提高处理速度。 8. **代码组织**:为了保持代码的可读性和可维护性,应遵循良好的编程规范,如模块化设计,将汉字到拼音的转换逻辑封装在独立的函数中。 9. **调试与测试**:编写完代码后,使用VB6的调试工具进行测试,确保所有汉字都能正确转换,并处理各种边界情况。 在压缩包中的`codesc.net`可能是一个源码文件或者包含了实现上述功能的代码。下载并查看这个源码文件,可以学习具体的实现方法和技巧,以便在自己的项目中应用类似的功能。
2025-03-26 01:11:50 3KB VB源码-字符处理
1
### 海量数据处理中基于数据划分的查询优化研究与实现 #### 一、引言 随着信息技术的快速发展,特别是互联网技术的普及,各种应用场景下的数据量急剧增长,形成了所谓的“海量数据”。这类数据通常具有以下几个特点:体积庞大、增长速度快、类型多样且复杂度高。面对如此规模的数据,传统的数据管理和查询方法已经难以满足需求,因此,如何高效地处理海量数据成为了一个重要的研究课题。 #### 二、海量数据处理背景与挑战 海量数据处理面临着诸多挑战,主要包括: - **存储成本**:大量的数据存储需要高昂的成本。 - **处理速度**:数据查询和处理的速度直接影响系统的响应时间。 - **可扩展性**:随着数据量的增长,系统需要具备良好的可扩展性以应对不断变化的需求。 - **查询性能**:如何在海量数据中快速定位所需信息,是提高用户体验的关键。 #### 三、查询优化方案比较与分析 1. **基于索引的查询优化**:通过建立索引来加快查询速度,适用于查询条件单一或固定的场景。 2. **基于分区的数据划分**:根据数据特征将其划分为多个子集,分别存储和管理,能够有效提升查询效率。 3. **基于统计信息的优化**:利用数据统计特性进行查询优化,如平均值、分布情况等,适用于数据分布较为均匀的情况。 4. **分布式查询优化**:利用多台服务器进行并行处理,适用于数据量极大且需要高速处理的场景。 每种方案都有其适用的场景和局限性,在实际应用中需要根据具体情况进行选择。 #### 四、基于数据划分的查询优化方法 针对海量数据的特点,本研究提出了一种基于数据划分的查询优化方法,该方法的核心思想是通过多个维度对数据进行划分,改变其存储处理方式,进而优化查询性能。具体步骤如下: 1. **数据预处理**:对原始数据进行清洗、标准化处理,确保数据质量。 2. **多维数据划分**:依据数据特征(如时间、地理位置等)进行多维度划分,形成多个子集。 3. **存储优化**:根据划分结果调整存储策略,如采用分布式存储、分区存储等方式。 4. **查询优化**:通过索引构建、并行查询等手段进一步提升查询效率。 这种方法的优势在于能够显著减少查询过程中需要扫描的数据量,从而大幅提高查询速度。 #### 五、并行查询服务的实现 在并行查询服务的实现上,本研究采用了CORBA(Common Object Request Broker Architecture,通用对象请求代理体系结构)作为中间件技术基础。通过并行查询服务的实现,不仅可以减少查询所需的时间,还能充分利用现有的软硬件资源,实现最高效的处理能力。 #### 六、性能分析与实验验证 为了验证基于多维数据划分的查询优化方法的有效性和可行性,本研究设计了一系列实验。实验结果表明,采用该方法后,查询效率得到了明显提升,特别是在大数据环境下,优势更为显著。此外,通过对不同数据规模、不同查询模式的对比测试,证明了该方法具有较好的适应性和扩展性。 #### 七、结论 基于数据划分的查询优化方法是一种有效解决海量数据处理中查询性能问题的技术方案。通过合理的数据划分和优化策略,不仅能够显著提升查询速度,还能有效降低系统整体的运行成本。未来的研究方向将进一步探索更高效的数据划分算法和技术,以应对日益增长的数据处理需求。
2025-03-25 12:29:20 4.89MB 海量数据处理 数据划分 查询优化
1