大数据集群(PySpark)+Hive+MySQL+PyEcharts+Flask:信用贷款风险分析与预测
2025-04-17 20:27:04 6.79MB 大数据分析
1
【基于MATLAB编程的车流量预测】是一种利用数学模型和编程技术对未来车流情况进行估算的科学方法。MATLAB,全称“矩阵实验室”,是MathWorks公司开发的一种强大的数学计算环境,广泛应用于数据分析、算法开发以及可视化等多个领域。在这个项目中,MATLAB被用来处理和分析与车流量相关的数据,以实现精准的预测。 车流量预测对于交通管理和城市规划至关重要,它可以帮助我们优化道路设计,减少交通拥堵,提高交通效率。在十字路口,车流量预测涉及多个方向的交通流,包括直行、左转和右转车辆的数量。通过收集历史数据并建立合适的预测模型,可以预测不同时间段内各个方向的车流变化,从而为交通信号控制提供参考。 MATLAB编程在车流量预测中的应用主要包括以下几个方面: 1. 数据预处理:需要对收集到的车流量数据进行清洗和整理,去除异常值,填补缺失值,并将时间序列数据转换为MATLAB可以处理的格式。 2. 特征工程:提取关键特征,如时间(小时、周几)、天气状况、节假日等因素,这些都可能影响车流量。同时,可能会考虑与其他交通节点的关联性,如相邻路段的车流情况。 3. 模型选择与训练:MATLAB提供了多种统计和机器学习模型,如线性回归、时间序列分析(ARIMA、状态空间模型等)、神经网络等,可以根据问题的具体情况选择合适的模型进行训练。 4. 模型验证与优化:通过交叉验证评估模型的预测性能,如均方误差(MSE)、平均绝对误差(MAE)等指标。根据结果调整模型参数,如神经网络的层数、节点数、学习率等,以提高预测精度。 5. 预测结果可视化:利用MATLAB的绘图功能,可以将预测结果与实际数据对比,直观地展示预测效果。图片文件(1.jpg至9.jpg)可能包含了预测结果的图表,如车流量随时间的变化曲线,以及不同模型的预测对比。 6. 应用与实施:最终,预测模型可以集成到交通管理系统中,实时接收数据并做出预测,帮助决策者提前调配交通资源。 这个项目的【结果.csv】文件可能是预测模型的输出,包含预测的车流量数据,可用于进一步分析或与实际数据比较。而.jpg图片文件可能展示了数据处理过程、模型训练结果以及预测结果的可视化。 总结来说,基于MATLAB编程的车流量预测是一项综合运用数据处理、统计建模和可视化技术的工作,对于理解和改善城市交通状况具有重要价值。通过对历史数据的深入分析和建模,我们可以更好地预测未来交通流量,从而制定更有效的交通管理策略。
2025-04-17 19:03:08 2.85MB matlab 十字路口
1
基于BP神经网络预测波士顿房价.7z,包含全部源代码,以及代码训练结果
2025-04-16 20:05:59 167KB 神经网络
1
基于simlink的永磁同步电机单电压矢量模型预测电流控制仿真及其优越的控制效果.pdf
2025-04-16 14:37:57 63KB
1
广义回归神经网络(Generalized Regression Neural Network, GRNN)是一种基于径向基函数(Radial Basis Function, RBF)的前馈神经网络,由Donald Specht在1991年提出。GRNN特别适用于回归问题,但也可以在一定程度上用于分类问题。 广义回归神经网络的特点: 径向基函数:GRNN使用径向基函数作为隐藏层神经元的激活函数,这些函数通常具有中心点和宽度参数。 非线性映射:输入数据通过径向基函数进行非线性映射,形成特征空间。 全局逼近能力:GRNN具有全局逼近能力,可以逼近任意连续函数到任意精度。 无局部极小问题:与传统的神经网络不同,GRNN的训练过程不涉及梯度下降,因此没有陷入局部极小值的风险。 快速训练:GRNN的训练过程简单,通常只需要一个或几个迭代步骤即可完成。 参数选择:GRNN的性能受到径向基函数的中心点和宽度参数的影响,这些参数的选择对模型的泛化能力至关重要。
1
三电平T型逆变器中点电压平衡控制的模型预测控制及其Matlab Simulink仿真研究,三电平T型逆变器模型预测控制中点电压平衡控制,包括电流预测控制模型、功率预测控制模型,,Matlab simulink仿真(2018a及以上版本) ,三电平T型逆变器; 模型预测控制; 中点电压平衡控制; 电流预测控制模型; 功率预测控制模型; Matlab simulink仿真,基于Matlab Simulink的T型三电平逆变器中点电压平衡的预测控制模型研究 三电平T型逆变器作为一种新型的电力电子转换装置,因其在高压、大功率应用领域的独特优势而受到广泛关注。中点电压平衡是三电平逆变器稳定运行的关键技术之一,其核心在于通过精确控制中点电位,确保逆变器输出电压波形的质量和功率平衡,从而提高系统的稳定性和可靠性。模型预测控制(Model Predictive Control,MPC)是一种先进的控制策略,它通过建立被控对象的数学模型,预测未来的系统行为,并在此基础上优化控制输入,以实现对控制目标的精确跟踪和控制。 在本文研究中,三电平T型逆变器的模型预测控制技术被应用到中点电压平衡控制领域。具体而言,该研究涉及建立精确的电流预测控制模型和功率预测控制模型。电流预测控制模型关注于逆变器输出电流的预测,通过预测电流在不同控制策略下的变化,可以实时调节逆变器的开关状态,以达到减少中点电压波动的目的。而功率预测控制模型则着眼于功率流动的预测,通过调整功率交换来控制中点电压,这在改善电力系统动态响应和提高能效方面具有重要意义。 Matlab Simulink仿真工具被广泛应用于电力电子系统的模拟和分析中,尤其是对于复杂的多变量控制系统。通过Matlab Simulink,研究人员可以在不实际搭建物理系统的情况下,对三电平T型逆变器的模型预测控制策略进行设计、测试和优化。仿真平台可以提供直观的图形化界面,便于理解和分析系统的动态响应,同时,Matlab强大的计算功能能够处理复杂的数学模型和控制算法。 本研究在Matlab Simulink环境中构建了三电平T型逆变器的仿真模型,并对其模型预测控制策略进行了深入研究。仿真结果表明,通过模型预测控制能够有效实现中点电压的稳定,减少电压波动,提高逆变器的整体性能。此外,仿真模型的搭建为后续的硬件实验和实际应用提供了理论基础和实验指导,为逆变器的设计和优化提供了有力的技术支持。 在实际应用中,三电平T型逆变器模型预测控制中点电压平衡技术不仅可以用于工业电力系统,还可以应用于电动汽车充电站、可再生能源发电并网、轨道交通牵引供电系统等。这些领域的广泛应用,展现了模型预测控制在现代电力电子技术中的巨大潜力和广阔前景。 此外,研究中还涉及到了三电平T型逆变器的一些基础概念和技术细节,如逆变器的工作原理、三电平结构的特点、中点电压平衡的原理等,这些基础知识对于理解模型预测控制在中点电压平衡中的应用至关重要。 本文研究通过深入探讨三电平T型逆变器中点电压平衡控制的模型预测控制方法及其在Matlab Simulink中的仿真,为电力电子转换技术的发展贡献了重要的理论和实践成果。研究成果不仅提升了逆变器的技术性能,还为相关领域的科研和工程实践提供了参考和借鉴。
2025-04-14 16:47:57 74KB 哈希算法
1
资源名称:Transformer模型在评论文本分类任务的应用 资源描述: 在当今信息爆炸的时代,文本数据的分析与处理变得尤为关键。评论文本分类,作为自然语言处理(NLP)领域的一项基础任务,对于理解消费者情感、自动化客户服务、内容监管等方面有着重要意义。本资源提供了一个基于Transformer模型的文本分类框架,能够高效地对评论文本进行情感分析和分类。 本项目采用了先进的Transformer架构,这一架构自2017年由Google的研究者提出以来,已成为处理各类NLP任务的金标准。Transformer的核心优势在于其自注意力(Self-Attention)机制,能够在处理文本数据时,无需考虑数据的序列性,从而更好地捕捉语境中的依赖关系。 主要特点包括: 高效的文本处理能力:通过自注意力机制,模型可以并行处理序列数据,显著提升处理速度和效率。 深度语义理解:Transformer通过多层自注意力和位置编码,深入挖掘文本中的细微语义。 广泛的适用性:模型训练完成后,可广泛应用于产品评论、电影评论、社交媒体评论等多种文本类型的情感分类。 易于集成和扩展:提供完整的代码和文档。
2025-04-14 11:20:04 1.31MB transformer 情感分析 python 毕业设计
1
内容概要:本文介绍了基于Python实现的CNN-BiGRU卷积神经网络结合双向门控循环单元的多变量时间序列预测模型。该模型融合了CNN的局部特征提取能力和BiGRU的全局时间依赖捕捉能力,旨在提高多变量时间序列预测的准确性和鲁棒性。文章详细描述了模型的架构设计、实现步骤、优化方法及应用场景。模型架构分为三大部分:卷积神经网络层(CNN)、双向GRU层(BiGRU)和全连接层(Dense Layer)。通过卷积核提取局部特征,双向GRU捕捉全局依赖,最终通过全连接层生成预测值。文章还探讨了模型在金融、能源、制造业、交通等领域的应用潜力,并提供了代码示例和可视化工具,以评估模型的预测效果。 适合人群:具备一定编程基础,对深度学习和时间序列预测感兴趣的开发者、研究人员和工程师。 使用场景及目标:①结合CNN和BiGRU,提取时间序列中的局部特征和全局依赖,提升多变量时间序列预测的精度;②通过优化损失函数、正则化技术和自适应学习率等手段,提高模型的泛化能力和稳定性;③应用于金融、能源、制造业、交通等多个领域,帮助企业和机构进行更准确的决策和资源管理。 阅读建议:此资源详细介绍了CNN-BiGRU模型的设计与实现,不仅包含代码编写,还强调了模型优化和实际应用。读者在学习过程中应结合理论与实践,尝试调整模型参数,并通过实验验证其预测效果。
1
风力发电和太阳能发电是两种重要的可再生能源发电方式,在全球能源结构转型和绿色低碳发展大潮中扮演着越来越重要的角色。风力发电依赖于风能,通过风力发电机将风能转化为电能;太阳能发电则是利用太阳能电池板将太阳辐射能直接转换为电能。这两种发电方式都具有清洁、可再生和分布广泛的特点,但同时它们的输出也受到天气和环境因素的强烈影响,如风速、太阳辐照度、温度、湿度等。 在实际应用中,为了提高风力和太阳能发电的效率和可靠性,科学家和工程师们通常会采用机器学习和预测模型来分析相关数据。机器学习是一种通过算法来分析数据,并且能够根据数据进行学习和做出预测的计算机技术。它在能源领域,尤其是风力和太阳能发电领域的应用,可以帮助我们更好地理解这些复杂的非线性系统,并通过数据驱动的方式优化发电效率和减少预测误差。 在进行数据分析和建模时,首先需要收集相关的输入特征变量,这些变量可能包括但不限于以下几点: 1. 风速:风力发电的主要影响因素,风速的变化直接影响风电机组的发电量。 2. 风向:影响风电机组的运行状态和发电效率。 3. 太阳辐照度:太阳能发电的核心影响因素,直接影响光伏电池板的发电量。 4. 温度:温度的变化会影响风电机组和光伏电池板的工作效率。 5. 湿度和其他气象因素:例如气压、降雨等,这些因素也可能对发电效率产生影响。 6. 发电量:实际测得的发电量数据,是评估发电效率和优化预测模型的重要指标。 7. 时间序列数据:包括年、月、日、时的数据,用以分析发电量的周期性变化和趋势。 通过对这些输入特征变量进行综合分析,可以建立用于预测发电量的模型。这类模型可以帮助电力系统运营商进行短期和长期的能源规划,如预测未来一定时间内的发电量,以便更好地平衡电力供需,提高电网的稳定性。同时,也可以辅助设计和优化风力和太阳能发电系统,提高发电效率和降低成本。 在机器学习领域,常用的预测模型包括线性回归、支持向量机、决策树、随机森林、神经网络等。每种模型都有其特点和适用场景,因此在实际应用中需要根据具体问题选择合适的模型。例如,对于数据量大且复杂的情况,深度学习模型如卷积神经网络(CNN)和循环神经网络(RNN)可能更能捕捉数据的深层次特征,从而提高预测的准确性。 此外,随着技术的发展,深度学习与强化学习的结合,即深度强化学习,也在风光发电预测领域展现了巨大的潜力。深度强化学习能够处理高维输入特征,并通过与环境的交互学习最优策略,这为风光发电的预测和控制提供了新的解决方案。 风力发电和太阳能发电的数据分析和预测对于提高可再生能源的利用率具有重要意义。通过机器学习和预测模型的应用,我们不仅能更精确地预测发电量,还能优化发电系统的运行和维护,最终实现更高效的能源管理和更绿色的能源消费。
2025-04-13 23:23:57 376.72MB 机器学习
1
包含age job marital default returned loan coupon_used_in_last6_month coupon_used_in_last_month Class
2025-04-13 22:29:31 570KB 机器学习
1