html5自适应企业网站源码是一套html5开发的自适应的网站源码,能够自动根据访问这的浏览器分辨率来适配终端显示,所以这套源码自己本身就相当于两个网站(电脑网站加手机网站)使用时只需要把对应的信息修改成自己的就可以。该软件适合广告公司、设计公司或者
1
基于STM32的PID模糊自适应PID控制程序,具有隶属度函数,PWM波形,传感器输入
matlab开发-混合动力车具有自适应遗忘功能,可重复控制电网转换器。。给出了基于群的自适应遗忘重复控制器的内部工作原理。
2023-03-03 14:55:07 1.58MB 未分类
1
自适应动态规划(近似动态规划)——ADP MATLAB_MATLAB编程
1
数字图像处理 该程序是使用Swing用J​​ava编写的。 已实现以下算法: 形态运算: 轮廓检测 非线性滤波器: 最小过滤器 最大过滤器 中值过滤器 开启过滤器 关闭过滤器 高斯模糊滤镜 在以下图片中,显示了此过滤器的结果,并且半径大小设置为14。 原始图片 结果图片 锐化蒙版滤镜 结果图片 FILTER PARAMETER: radius = 5 unsharp mask value = 4 坎尼边缘检测器 结果图片 FILTER PARAMETER: low threshold = 100 hight threshold = 120 radius = 2 骨骼化 原始图片 结果图片 自适应中值滤波器 原始图片 结果图片 FILTER PARAMETER: radius min = 0 radius max = 4 双边过滤器 原始图片 结果图片 FILTER P
2023-03-02 19:21:10 47KB Java
1
随着DSP技术的高建发展,人们对信号处理的实时性、准确性和灵活性的要求越来越高,DSP技术在信号处理中的地位也越来越重要。自适应滤波器是一种复杂的算法,设计它是为了在均衡信道,抵消回波,增强谱线,抑制噪声等方面有所应用。而自适应滤波器的实现主要采用最小均方误差算法完成。自适应算法通过调整滤波器系数来实现可以更好地跟踪信号的变化,最终实现自适应滤波。   滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率
1
乌日达 具有统一联合分布对齐的无监督域自适应 先决条件: Python3 PyTorch == 0.4.1(具有合适的CUDA和CuDNN版本) 火炬视觉== 0.2.0 脾气暴躁的 tqdm 资料集: 您需要在“ ./data”中的每个“ .txt”中修改图像的路径。 训练: 跑步 : python train.py --config ../config/dann.yml --dataset Office-31 --src_address ../data/amazon.txt --tgt_address ../data/dslr.txt --src_test_address ../data/amazon.txt 引文: 如果您使用此代码进行研究,请考虑引用: 接触 如果您对我们的代码有任何,请随时联系 。
2023-03-01 20:14:51 42KB Python
1
领域自适应深度网络压缩 提供ICCV 2017 ,可在找到海报。 也可以使用。 如何运行tensorflow代码 该示例是在简单的非域转移简单实验上完成的。 我们在MNIST数据集上从头开始训练LeNet网络,然后使用SVD基线或我们提出的DALR方法压缩网络。 示例代码在jupyter笔记本中给出。 cd code/tensorflow jupyter notebook Experiment_LeNet_MNIST.ipynb 如何运行Matlab代码 可以从下载示例网络,然后将其复制到新文件夹“ nets /”。 mkdir nets cd nets wget http://mmasana.foracoffee.org/DALR_ICCV_2017/birds_vgg19_net.mat 然后,可以通过在MatLab终端上调用“ mainScript_compress_DALR.m
2023-02-28 15:03:14 39.93MB JupyterNotebook
1
自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
为了改善针对一般非线性离散时间系统的控制性能,引入“拟伪偏导数”概念,给出了一般非线性离散时间系统沿迭代轴的非参数动态线性化形式,并综合BP神经网络以及模糊控制各自的优点,提出了基于BP算法无模型自适应迭代学习控制方案。仿真结果表明,该控制器对模型有较强的鲁棒性和跟踪性。
2023-02-27 15:26:40 389KB BP算法
1