machine vision_Ramesh Jain Rangachar Kasturi Brian G.Schunck
2022-03-31 20:15:38 188.86MB machine vision Ramesh Jain
1
labview 视频图像显示 包含vision模块
2022-03-31 09:40:53 41KB labview 视频图像显示 vision
1
计算机视觉算法与应用computer vision algorithm and application
2022-03-28 23:55:00 47.42MB 计算机视觉 算法 应用
1
在网上下载的PRML中文版 机器学习的经典中的经典. 此中文版,并非官译,是某大神在学习原版时,为了方便学习而翻译的. 有需要的拿走,不能设置0分,最低只能设置1分.见谅!
2022-03-28 16:50:32 11.71MB PRML 中文版
1
基于Gabor特征的屏幕内容图像质量评估模型 IEEE图像处理事务(T-IP) ,曾焕强,,侯俊辉,陈静和 | 介绍 该网站共享IEEE图像处理事务(T-IP),第1卷,“屏幕内容图像的基于Gabor特征的质量评估模型”的代码。 27,pp.4516-4528,2018年9月。 抽象的 本文提出了一种基于提取的Gabor特征的准确高效的全参考图像质量评估(IQA)模型,称为基于Gabor特征的模型(GFM),用于对屏幕内容图像(SCI)进行客观评估。 众所周知,Gabor滤波器与人类视觉系统(HVS)的响应高度一致,并且HVS对边缘信息高度敏感。 基于这些事实,将具有奇数对称性并产生边缘检测的Gabor滤波器的虚部用于参考和失真SCI的亮度,以分别提取其Gabor特征。 然后独立测量在LMN颜色空间中记录的提取Gabor特征和两个色度分量的局部相似性。 最后,采用Gabor特征池化策略来
1
凯拉斯(Keras)RMAC 基于(Tolias等人2016)和(Gordo等人2016),为Keras重新实现了区域最大卷积激活(RMAC)特征提取器。 该模型的架构如下图所示: RoiPooling代码来自: : 先决条件 此代码需要Keras 2.0或更高版本。 (2.7) (2.1.2) (0.9.0) ->下载文件并将其保存在data/文件夹中 参考 Tolias,G.,Sicre,R.和Jégou,H.具有CNN激活的积分最大池的特殊对象检索。 ICLR 2016。 Gordo,A.,Almazán,J.,Revaud,J.和&Larlus,D。深度图像检索:学习图像搜索的全局表示。 ECCV 2016。 引文 该代码是Keras的RMAC的重新实现。 如果使用此代码,请引用使用重新实现的论文和原始RMAC论文: @article{garcia2018a
2022-03-26 15:46:27 2.3MB python computer-vision retrieval keras
1
CVPR2021-代码 论文开源项目(带代码的文件)合集!CVPR 2021论文收录列表: : 注1:等2021年2月28日开奖后,欢迎各位大佬提交issue,分享CVPR 2021本文和开源项目! 注2:CVPR 2021已交稿成立!已投稿且想要进来的群同学,可以添加微信: CVer9999 ,请备注: CVPR2021已投稿+姓名+学校/公司名称!一定要根据格式申请! 【推荐阅读】 论文开源项目合集: : ECCV 2020论文开源项目合集: : 关于往年CV顶会论文(如ECCV 2020,CVPR 2019,ICCV 2019)以及其他优质CV论文和大盘点,详见: : 【CVPR 2021论文开源目录】 [人脸活体检测(面部防欺骗)](#面部防欺骗) 骨干 RepVGG:使VGG样式的ConvNets再次出色 论文: : 代码: : 甘 通过分层样式分
1
WSDDN PyTorch 使用最新版本的PyTorch实施Weakly Supervised Deep Detection Networks 。 Bilen, H., & Vedaldi, A. (2016). Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2846-2854). 实施差异 亚当优化器(而不是SGD) 未添加空间正则化器 实验 基于VGG16的模型最接近EB + Box Sc. L型案例,报告为30.4 mAP 基于AlexNet的模型最接近EB + Box Sc. 模型S的案例,报告为33.4 mAP 将VGG16用作基本模型时的结果 航空 自行车
2022-03-24 19:44:16 14KB computer-vision deep-learning pytorch pascal-voc
1
This book provides comprehensive coverage of 3D vision systems, from vision models and state-of-the-art algorithms to their hardware architectures for implementation on DSPs, FPGA and ASIC chips, and GPUs. It aims to fill the gaps between computer vision algorithms and real-time digital circuit implementations, especially with Verilog HDL design. The organization of this book is vision and hardware module directed, based on Verilog vision modules, 3D vision modules, parallel vision architectures, and Verilog designs for the stereo matching system with various parallel architectures.,解压密码 share.weimo.info
2022-03-24 13:52:50 4.31MB 英文
1
多阶段渐进式图像恢复(CVPR 2021) , , , , , 和 论文: : 补充文件: 摘要:图像恢复任务要求在恢复图像时在空间细节和高级上下文信息之间达成复杂的平衡。 在本文中,我们提出了一种新颖的协同设计,可以最佳地平衡这些相互竞争的目标。 我们的主要建议是一个多阶段体系结构,该体系结构逐步学习降级输入的恢复功能,从而将整个恢复过程分解为更易于管理的步骤。 具体来说,我们的模型首先使用编码器-解码器体系结构学习上下文相关的功能,然后将它们与保留本地信息的高分辨率分支相结合。 在每个阶段,我们都会介绍一种新颖的每像素自适应设计,该设计利用现场监督的注意力来重新加权局部特征。 这种多阶段体系结构中的关键要素是不同阶段之间的信息交换。 为此,我们提出了一种两方面的方法,其中不仅从早期到后期顺序地交换信息,而且还存在特征处理块之间的横向连接,以避免任何信息丢失。 由
1