重写onViewClick,使展开树结点是不关闭下拉框 onViewClick: function...Ext JS 4实现带week(星期)的日期选择控件 EXT中xtype的含义分析热点
2025-12-29 21:55:37 1KB
1
内容概要:本文介绍了带隙基准(Bandgap Reference)电路的基本概念及其在集成电路中的重要作用,重点解析了电压模、亚阈值补偿电路、cascode结构提升PSRR,以及二级运放配合密勒电容和调零电阻的电路设计。文章提供了完整的仿真方法,包括获取经典抛物线输出、电源抑制比(PSRR)测试、环路稳定性分析和瞬态启动验证,并附有经典论文与仿真资料推荐,适合新手快速上手。 适合人群:电子工程相关专业学生、刚入行的集成电路设计工程师,具备基本电路知识、工作1-3年的研发人员。 使用场景及目标:①学习带隙基准电路的核心结构与工作原理;②掌握PSRR优化、稳定性仿真与瞬态分析等关键仿真技能;③通过提供的工艺文件(.13um)和无需版图的设计实现快速仿真验证。 阅读建议:建议结合提供的仿真参考资料和经典论文,使用主流EDA工具进行实操仿真,重点关注运放结构设计、补偿机制与环路稳定性之间的关系,强化理论与实践结合。
2025-12-29 21:48:15 633KB 仿真方法
1
用于登录旧版华为云服务器,软件为官方正版。版本1.8和v1.6.50005,huawei云桌面客户端AccessClient 1.8.10002.0 下载,CloudClient HDPClient 华为云桌面AccessClient-for-win.msi是一款官方正版的客户端软件,用于登录旧版华为云服务器。该软件有两个主要版本,分别是1.8和v1.6.50005。其中,1.8版本的华为云桌面客户端AccessClient为1.8.10002.0版本,而v1.6.50005版本的软件文件名称为Client_for_windows_v1.6.50005.zip。此外,该软件还有一个名为CloudClient HDPClient的版本。 服务器软件是一种安装在服务器硬件上的程序,用于提供特定的服务。它可以是任何类型的软件,包括数据库管理程序、电子邮件服务器、文件共享程序等。服务器软件的设计目的是使多个用户能够在网络上共享资源和数据。 云桌面是一种基于云计算技术的桌面虚拟化技术。用户可以远程访问服务器上的桌面环境,就像访问本地桌面一样。这种技术可以提高工作效率,简化IT管理,并提高数据安全性。 软件插件是一种扩展软件功能的小型软件程序。它们可以被安装在现有软件之上,以增加新的功能或改进现有功能。插件可以在许多不同类型的软件中使用,包括浏览器、媒体播放器、图像编辑软件等。 在使用华为云桌面AccessClient-for-win.msi软件时,用户需要先下载相应的文件。下载完成后,双击运行文件并按照提示进行安装。安装完成后,用户可以使用该软件登录旧版华为云服务器,享受云桌面带来的便捷和高效。 华为云桌面AccessClient-for-win.msi是一款功能强大的服务器软件,可以大大提高工作效率和数据安全性。同时,它也是一款优秀的软件插件,可以为用户提供更多的功能和更好的使用体验。
2025-12-29 21:41:06 154.85MB
1
石英晶体谐振器规格书详细介绍了石英晶体谐振器的电气性能和参数指标,适用于深圳市星通时频电子有限公司生产的型号为S3B25.000F1210F30的石英晶体谐振器。该规格书由广州创龙电子科技有限公司客户使用,并通过其进行审批确认。 该石英晶体谐振器采用SMD3225封装形式,具有25.000MHz标称频率,属于基础振荡模式。产品具备±10PPM的常温频差和10μW典型激励功率,可应用于温度频差为±30PPM的环境(以25℃为基准)。负载电容为12pF,谐振电阻最大不超过30Ω,静电容限制在最大3pF。此外,产品在激励功率从100nW到100uW的范围内进行了209次扫描,激励功率依赖性最大为10Ω。 该规格书包含修订记录,显示了不同版本的修订页码、修订内容及修订日期,最新版为B01,修订日期为2021年2月24日。文档还提供了深圳市星通时频电子有限公司的联系信息,包括地址、网址、电子邮箱、电话和传真。 根据规格书,该石英晶体谐振器需要得到客户的审批确认,以确保其技术参数满足使用需求。审批确认后,客户和供应商将完成必要的流程,确保该组件能被正确应用于所需的机型中。 产品还符合RoHS指令,表明其不含有害物质,符合环保标准。修订历史表明,该规格书自从2013年首次发布以来,经历了数次修订升级,但其主要内容保持不变。2018年和2021年的修订增加了修订记录页,以跟踪文档的更新历史。文档的制表人、校对员、审核员及签章页也均在文件中有所体现,确保了规格书的专业性和正式性。 此外,规格书还包含了石英晶体谐振器的工作原理和应用,解释了频率稳定性、负载电容、谐振电阻等参数在电子设备中的重要作用。在生产过程中,必须严格控制这些参数,以保证产品的性能符合设计标准和使用要求。通过这本规格书,用户可以全面了解产品的特点,以及如何正确地选用和装配该石英晶体谐振器。
2025-12-29 21:10:43 593KB
1
FLAC3D 6.0-7.0版塑形区体积输出及剪切、张拉破坏区域体积可视化展示,FLAC3D 6.0-7.0版体积输出:塑形区、剪切破坏区及张拉破坏区体积分析图示,FLAC3D输出塑形区体积,适用于6.0和7.0版本,输出剪切破坏区域,张拉破坏区域体积,如图2中所示 ,塑形区体积; FLAC3D 6.0与7.0; 剪切破坏区域; 张拉破坏区域体积; 图2,FLAC3D 6.0/7.0 剪切张拉破坏区体积输出 FLAC3D是一种用于岩土工程和岩土工程地质模拟的有限差分计算软件,该软件在处理复杂地下结构和地质体的分析中发挥着重要作用。随着软件版本的更新迭代,其功能也得到了不断的完善和增强。在FLAC3D 6.0至7.0版本中,引入了塑形区体积输出及剪切、张拉破坏区域体积的可视化展示功能,这对于岩土工程领域中对岩土体破坏过程和变形行为的分析提供了直观的判断依据。 塑形区体积输出是指软件能够计算并展示出在模拟过程中,由于应力作用导致岩土体塑性变形的区域体积大小。在FLAC3D中,塑形区通常是指那些经历了屈服并进入塑性状态的区域,这些区域的材料特性已经发生改变,失去了原有的弹性性质。对塑形区体积的监测可以帮助工程师评估岩土体在外界荷载作用下的稳定性和变形程度,是判断岩土体安全状态的重要指标。 剪切破坏和张拉破坏是岩土体破坏的两种主要形式。剪切破坏是指岩土材料在剪切应力作用下发生破坏,这种破坏通常伴随着滑移面的形成;而张拉破坏则是由张应力导致的,它通常发生在岩土材料承受拉伸应力时,导致裂隙的扩展和材料的断裂。在FLAC3D软件中,对剪切破坏区和张拉破坏区的体积进行输出,可以清晰地展示出破坏区域的规模和分布,对预防和控制岩土体失稳具有重要意义。 在FLAC3D的可视化分析中,通过图示可以直观地看出塑形区、剪切破坏区和张拉破坏区的空间位置、形状和体积大小。例如,在图2中展示的分析图示,能够帮助工程师对岩土体内的应力分布和破坏模式有一个直观的认识,进而对工程设计和施工提供科学的指导。 此外,该功能特别适用于6.0和7.0这两个版本的FLAC3D软件,确保用户可以在最新版本的软件中,对塑形区体积及其与剪切和张拉破坏区的关联进行深入分析。这不仅提升了软件的实用性,同时也增强了工程师在岩土工程分析和设计中的效率和准确性。 通过压缩包子文件的文件名称列表,我们可以看到相关的文档内容涉及到了使用FLAC3D软件进行岩土工程分析的各种实践方法和技巧。例如,文档《基于分解联合小波阈值降噪的实现.docx》可能探讨了如何使用信号处理技术优化FLAC3D在处理复杂地质条件下的模拟结果;而《分析的输出与塑形区体积张拉和剪切破.docx》则可能涉及具体分析流程和塑形区体积计算方法的介绍。其他文件名中提到的“塑形区体积”、“剪切破坏区域”、“张拉破坏区域”等关键词,均指向了文档中相关内容的重点讨论范围。 综合以上内容,FLAC3D软件的版本更新为岩土工程领域带来了一系列技术上的进步,尤其是在塑形区体积的计算以及剪切、张拉破坏区域的可视化方面。这些功能的加入,不仅提高了工程模拟的准确性,也为岩土工程的设计、施工和安全性评估提供了强大的技术支持。
2025-12-29 20:53:57 1.28MB
1
本文介绍了FLAC3D6.0中用于巷道支护、煤层开采和充填的源代码示例,包含三组主要代码:巷道开挖、巷道锚杆支护和工作面充填开采。每组代码均配有详细的中文注释,解释每行代码的功能和用途。巷道开挖部分展示了如何创建模型、设置材料属性和模拟开挖过程;锚杆支护部分说明了如何定义锚杆属性和应用支护命令;充填开采部分则演示了煤层开采和充填体的创建与分析。这些代码适合初学者学习FLAC3D的基本操作和应用,但需根据具体研究需求和地质条件进行调整。 FLAC3D是一款先进的岩土工程数值模拟软件,被广泛应用于模拟和分析地下结构和岩土材料的行为。在岩土工程领域,尤其是在煤层开采和巷道支护的设计与分析中,FLAC3D的运用极为重要。本文所提供的FLAC3D6.0版本的源代码示例,详细阐释了如何通过软件进行模拟和分析。 在巷道开挖的代码部分,首先展示了如何创建模型。这包括定义模型的几何形状、尺寸以及划分网格。接着,需要对模型中的材料属性进行设置,其中包括了材料的力学参数,如弹性模量、泊松比、抗剪强度等,这些参数对于模拟的准确性至关重要。完成模型和材料设置后,模拟开挖过程的关键步骤是逐步释放围岩应力,这一步骤需要在程序中逐步进行,以模拟真实的开挖过程,并观察模型在开挖过程中的应力变化和位移情况。 在锚杆支护部分,代码说明了如何定义锚杆属性和施加支护命令。锚杆是地下工程中常用的支护方式,通过模拟锚杆的安装和作用,可以评估其对围岩稳定性的贡献。代码中会对锚杆的类型、位置、长度以及施加的预应力等参数进行设置。通过分析锚杆施加后模型的应力和位移变化,可以对锚杆的支护效果进行评估。 充填开采部分的代码演示了如何模拟煤层开采以及充填体的创建与分析。这包括了开采过程的模拟,以及对充填材料的设置,如充填材料的力学性质等。在开采过程中,需要考虑地层移动和变形,以及充填材料对这些变形的影响。通过设置不同的充填方案和参数,可以对充填效果进行优化,以减少开采后地表的下沉,确保地下结构的安全。 以上这些代码示例适合初学者学习FLAC3D的基础操作和应用。尽管代码中包含了详细的中文注释,便于理解每行代码的功能和用途,但这些示例代码所提供的是一般性的应用,实际应用时,研究者需要根据具体的地质条件、工程需求和材料特性进行相应的调整和优化。 在岩土工程的实际应用中,FLAC3D能够提供可靠的模拟结果,帮助工程师进行科学决策。然而,工程师在使用FLAC3D时,也需要结合现场监测数据和工程实践经验,以确保模拟结果的准确性和工程设计的有效性。 FLAC3D6.0中的巷道支护、煤层开采和充填的源代码示例,为岩土工程师提供了一个有效的工具和方法,使得复杂的地下工程问题得以通过数值模拟进行深入研究。通过对模拟结果的分析,可以对工程设计和施工方案进行优化,确保工程的安全性和经济性。
2025-12-29 20:50:14 1.97MB FLAC3D 岩土工程 数值模拟 巷道支护
1
机房及网络系统建设方案【模板范本】.doc
2025-12-29 20:38:11 559KB
1
本文详细介绍了如何对YOLOv10模型进行结构化通道剪枝,以优化模型性能。文章首先概述了剪枝技术在深度学习模型压缩中的重要性,随后详细讲解了训练原始模型、模型剪枝、剪枝后训练以及效果对比的全过程。关键步骤包括解析命令行参数、定义剪枝函数和结构、保存剪枝后的模型以及进行fine-tune训练。通过对比剪枝前后的参数量、计算量和FPS等指标,评估了剪枝优化的效果。文章还提供了必要的环境配置和代码示例,帮助读者快速实现模型剪枝。 深度学习领域中,模型压缩技术一直是一个备受关注的研究方向,其中剪枝技术因其能够有效减少模型复杂度、提高运算效率而被广泛采用。模型剪枝旨在去除神经网络中冗余的参数和结构,以减轻模型的存储和计算需求,但同时保持尽可能高的准确度。 YOLO(You Only Look Once)模型作为目标检测领域的一种快速算法,以其优异的检测速度和准确度被广泛应用。然而,随着模型规模的增大,YOLO模型的计算开销也随之增长。为了解决这一问题,有研究者提出了对YOLO模型进行剪枝优化的方法。YOLOv10剪枝优化即是该方法中的一种,它通过对模型的结构化通道剪枝来达到压缩模型的目的。 结构化通道剪枝基于对网络中各个层重要性的分析,通过设定一定的策略去除那些对模型影响较小的通道。剪枝的过程需要精心设计,以避免过度剪枝导致模型性能的急剧下降。文章中提到的关键步骤,如解析命令行参数、定义剪枝函数和结构、保存剪枝后的模型以及进行fine-tune训练,均为剪枝技术的实施提供了详细的操作指导。 在剪枝优化过程中,需要对比剪枝前后的参数量、计算量和FPS(每秒帧数)等指标。参数量的减少直接关系到模型的存储需求,计算量的降低则意味着运行时的计算资源消耗将大幅减少,而FPS的提升则直接反映在处理速度上。这些指标的综合评估为剪枝优化效果的衡量提供了客观依据。 文章还特别提到了环境配置和代码示例的重要性,这对于那些希望在实践中尝试模型剪枝的读者来说是必不可少的。通过提供这些信息,读者可以更方便地搭建起实验环境,并通过实际操作来掌握剪枝技术,最终实现对YOLOv10模型的有效优化。 YOLOv10剪枝优化通过代码实现,使得研究人员和工程师能够通过操作简单的命令行参数来执行剪枝工作,这无疑降低了剪枝技术的门槛,促进了该技术在实际应用中的推广。代码的公开和分享,使得其他研究者可以在现有基础上进行进一步的开发和改进,推动目标检测模型的优化朝着更加高效和实用的方向发展。 此外,随着计算机视觉技术的不断进步,剪枝技术也呈现出多样化的发展趋势。例如,非结构化剪枝、稀疏剪枝、动态剪枝等更为先进的剪枝策略逐渐成为研究热点。YOLOv10模型的剪枝优化代码和相关研究,为这一领域的探索提供了良好的起点和参考。 YOLOv10剪枝优化工作不仅为深度学习模型压缩提供了新的思路和技术手段,也为目标检测算法的实际部署提供了重要的技术支持。通过剪枝技术,我们可以期待在不久的将来,有着更高性能、更小体积的深度学习模型将广泛应用于各类智能系统之中,推动技术的进一步发展和应用。
2025-12-29 20:36:01 11.56MB 深度学习 剪枝技术
1
在MATLAB环境中,针对泰克(Tektronix)TDS7254示波器的开发涉及到了数据采集、仪器控制以及信号分析等多个关键知识点。本文将深入探讨这些主题,帮助读者理解如何利用MATLAB与TDS7254B示波器进行交互。 "tektronix_tds7254B.mdd"文件是MATLAB数据设备驱动(MDD,MATLAB Data Device)文件,它是MATLAB与硬件设备通信的核心。MDD文件提供了用于控制和通信的接口,使得MATLAB代码能够通过编程方式操作TDS7254B示波器,实现设置参数、捕获数据、读取波形等操作。例如,你可以使用这个驱动程序来配置示波器的采样率、带宽、垂直和水平刻度,以及触发模式。 "license.txt"文件通常包含了软件授权信息,对于MATLAB仪器驱动程序来说,它可能包含使用该驱动程序与TDS7254B示波器连接所需的特定许可证或协议。遵循这些条款是合法使用和操作仪器的关键,确保用户在开发过程中不违反版权或许可规定。 在基于物理和事件的建模方面,MATLAB提供了一个强大的环境来模拟实际世界中的物理系统。在TDS7254B示波器的上下文中,这意味着可以通过模型预测示波器对不同输入信号的响应,或者在模拟环境中测试不同设置的效果。例如,可以创建一个模型来模拟示波器的采样过程,分析在不同带宽限制下信号失真的情况。 在MATLAB中,可以使用Instrument Control Toolbox来控制TDS7254B。这个工具箱提供了丰富的函数库,用于建立与各种仪器的接口,包括示波器。通过调用特定的函数,如`scope.open`来初始化连接,`scope.configure`来设置参数,以及`scope.getdata`来获取捕获的数据。 在信号分析方面,MATLAB提供了强大的信号处理工具,如滤波、频谱分析、谐波分析等。获取TDS7254B的波形数据后,可以利用这些功能进行深入分析。例如,使用傅里叶变换分析信号的频率成分,或者通过小波分析研究信号的时间-频率特性。 总结起来,MATLAB开发与泰克TDS7254B示波器的结合,涵盖了仪器控制、数据采集、物理建模和信号分析等多个技术领域。通过理解和应用这些知识点,工程师可以更高效地进行实验设计、数据分析和系统验证。
2025-12-29 20:35:39 14KB 基于物理和事件的建模
1
蜗轮蜗杆减速器是一种常见的机械传动装置,广泛应用于各种机械设备中,如电梯、起重机、输送设备等。这种减速器通过蜗轮蜗杆的啮合实现动力传递,并能有效地降低转速,增大扭矩。在本项目中,我们将深入探讨蜗轮蜗杆减速器的建模与仿真过程,为学生提供一个基本的参考框架。 建模是理解和分析机械设备性能的关键步骤。对于蜗轮蜗杆减速器,建模主要包括几何模型的构建和运动学、动力学模型的建立。我们需要根据实际结构尺寸,使用CAD软件(如AutoCAD或SolidWorks)绘制蜗轮蜗杆的三维模型,包括蜗轮的螺旋齿形和蜗杆的轴向齿形,确保几何精度以满足实际装配要求。 接着,我们要建立运动学模型。蜗轮蜗杆的运动学主要研究它们之间的相对运动,包括转动方向和角速度关系。蜗轮通常固定在壳体上,而蜗杆可以自由旋转。由于蜗轮蜗杆的螺旋齿形,两者的啮合导致了扭矩的转换。在这里,我们可以利用齿轮理论,确定蜗轮蜗杆的速比,即输入转速与输出转速的比值。 然后,进入动力学模型的建立。动力学模型考虑了力和力矩的传递,包括摩擦力、重力、惯性力等影响因素。蜗轮蜗杆减速器中的摩擦力主要来源于蜗轮蜗杆的啮合摩擦和轴承摩擦,这些都需要通过实验或经验公式来估算。此外,我们还需要考虑负载对减速器性能的影响,例如,当负载变化时,输出扭矩和输入功率也会相应变化。 仿真则是将建立的模型在特定环境中进行模拟运行,以便观察其动态行为。在机械工程中,常用的仿真工具有MATLAB/Simulink、ADAMS等。在这些软件中,我们可以输入已知参数,如初始条件、输入转速、材料性质等,然后运行仿真,获取输出扭矩、速度、功率等动态数据。通过仿真,我们可以预测减速器在不同工况下的性能,甚至发现潜在的设计问题,如过热、振动等。 在蜗轮蜗杆减速器的仿真过程中,可能会遇到的问题包括模型简化带来的误差、参数估计的准确性、以及计算效率等。为了提高仿真结果的可信度,我们需要不断调整模型参数,与实验数据进行对比,直至得到满意的结果。 蜗轮蜗杆减速器的建模与仿真是一个综合性的工程问题,涉及到机械设计、力学分析、计算方法等多个领域。通过这一过程,学生不仅能深化对蜗轮蜗杆减速器工作原理的理解,还能掌握建模与仿真的技能,为未来从事相关工作打下坚实的基础。
2025-12-29 20:33:13 9.74MB 减速器,建模
1