猫狗分类 牛津-IIIT宠物数据集。 问题在于对数据集中显示的每种动物进行分类。 第一步是对猫和猫之间的品种进行分类,然后对猫和猫的品种分别进行分类,最后将种族混合在一起进行分类,从而增加了问题的难度。 步骤1 获取数据集: bash utils / get_dataset.sh 第2步 预处理数据集: bash rul_all_preprocessing.sh 第三步 培训模型的创建: bash run_all_models.sh 第四步 要运行TensorBoard,请打开一个新终端并运行以下命令。 然后,在您的Web浏览器中打开 。 脚本/ 选择你的型号 张量板--logdir ='。/ logs'--port = 6006
1
神经网络和统计学习(Neural networks and statistical learning) by K.-L. Du and M.N.s. Swamy
2021-12-03 17:00:21 13.11MB 计算机视觉 神经网络 统计学习
1
鬼网 新闻 2020/11/10 TinyNet(NeurIPS 2020)的代码已在发布。 2020/10/31 GhostNet + TinyNet取得了更好的性能。 请参阅我们的NeurIPS 2020论文中的详细信息: 。 2020/09/24我们发布了GhostNet模型,可在和上更多视觉任务。 2020/06/10 GhostNet包含在。 2020/06/08 PyTorch代码包含在此存储库中。 GhostNet:廉价运营带来的更多功能。 CVPR2020。 韩开,王云和,田琦,郭建元,徐春景,徐昌。 方法 性能 GhostNet击败了其他SOTA轻量级C
1
深度日志 这是用于研究目的的核心DeepLo​​g的实现。 功能工程的基本思想是分析原始日志并最终基于一系列处理报告潜在的恶意日志。 型号的在线更新部分,请检查 正在做: dvc实验 dvc dags 特征: 将日志转换为结构化的熊猫框架 从原始日志中提取日志密钥 分析日志密钥执行路径 分析日志键中的参数 结合两个模型的结果 分析PCA从窗口大小和时间间隔生成的时间序列数据。 对于数据集,我给出了一些示例,您可以将自己的数据放入该文件夹中。 预备: # in order to match the libraries versions, please run and build the project in virtual environment virtualenv env pip3 install -r requirement.txt 说明(在Deeplog_demo文件夹
2021-12-01 18:20:56 3.65MB shell pandas python3 lstm-neural-networks
1
验证码识别CAPTCHA_recognizing 第九届中国大学生服务外包创新创业大赛-A16验证码识别(河海大学-李说啥都对) 本项目抛弃了传(过)统(时)的SVM支持向量机,使用卷积神经网络(Convolutional Neural Networks, CNN)针对所给验证码进行识别,五类验证码的准确率均在95%+,第一类竟达到100%。Let's come to the point! 第一类验证码 First CAPTCHA 第一类验证码为四则运算验证码,包含一个四则运算,验证方法为要求用户输出运算表达式及结果。验证码包含噪点干扰。如图示例: 卷积操作拓扑图如下: 第二类验证码 Second CAPTCHA 第二类验证码为英文字母+数字验证码,包含5个字符,验证方法为要求用户输出验证码中的字符,大小写不限。验证码包含噪点干扰,文字无旋转形变。如图示例: 第三类验证码 Third CA
2021-12-01 12:23:37 560KB Python
1
图分类实验 描述 它能做什么 怎么跑 一,安装依赖 # clone project git clone https://github.com/YourGithubName/your-repo-name cd your-repo-name # optionally create conda environment conda update conda conda env create -f conda_env.yaml -n your_env_name conda activate your_env_name # install requirements pip install -r requirements.txt pip install hydra-core --upgrade --pre 接下来,按照以下说明安装pytorch geometric: 现在,您可以使用默认配置训练模
1
Coursera上的深度学习专业化(由deeplearning.ai提供) deeplearning.ai提供的Coursera所有课程的编程作业和测验。 授课老师: 笔记 有关Coursera深度学习专业中所有课程的详细面试准备笔记,请 设置 运行setup.sh以(i)下载经过预先​​训练的VGG-19数据集,并(ii)提取所有分配所需的经过z​​ip压缩的经过预先训练的模型和数据集。 学分 此仓库包含我针对该专业的工作。除非另有说明,否则代码库,测验问题和图表均取自的“ 。 编程作业 课程1:神经网络与深度学习 课程2:改善深度神经网络:超参数调整,正则化和优化 课程3:构建机器学习项目 此课程没有PA。但是本课程附带了非常有趣的案例研究测验(如下)。 课程4:卷积神经网络 课程5:序列模型 测验解决方案 课程1:神经网络与深度学习 第1周测验-深度学习简介: | 第2周测验-神经
1
DeepGCN:GCN可以像CNN一样深入吗? 在这项工作中,我们提出了成功训练非常深的GCN的新方法。 我们从CNN借用概念,主要是残差/密集连接和膨胀卷积,然后将其适应GCN架构。 通过广泛的实验,我们证明了这些深层GCN框架的积极作用。 概述 我们进行了广泛的实验,以展示不同的组件(#Layers,#Filters,#Nearest Neighbors,Dilation等)如何影响DeepGCNs 。 我们还提供了针对不同类型的深层GCN(MRGCN,EdgeConv,GraphSage和GIN)的消融研究。 进一步的信息和详细信息,请联系和 。 要求 (仅用于可视化) (仅用于可视化) conda环境 为了设置运行所有必要依赖项的conda环境, conda env create -f environment.yml 入门 您将在文件夹中找到有关如何使用我们的代码对3
1
神经网络可视化 神经网络架构和参数的可视化。 描述 这个项目是为我的硕士论文完成的。 可以从论文中获得一般描述: 抽象的 人工神经网络是人工智能研究的热门领域。 大型模型的大小和复杂性的增加带来了某些问题。 神经网络内部工作缺乏透明度,因此很难为不同任务选择有效的架构。 事实证明,解决这些问题具有挑战性,并且由于缺乏对神经网络的深入了解,这种情况变得根深蒂固。 考虑到这些困难,介绍了一种新颖的3D可视化技术。 通过使用来自神经网络优化领域的既定方法,可以估算出经过训练的神经网络的属性。 批处理规范化与微调和特征提取一起使用,以估计神经网络不同部分的重要性。 重要值与各种方法(如边缘捆绑,光线跟踪,3D冒名顶替者和特殊的透明技术)的组合产生了代表神经网络的3D模型。 证明了所提取的重要性估计的有效性,并探索了开发的可视化的潜力。 如何使用 使用描述的参数准备configs/processi
1
Hinton 2006年的数据降维的方法
2021-11-30 11:21:05 361KB auto encoder Hinton
1