yolov学习笔记-行人数据集
2024-06-03 12:36:09 5.32MB 数据集
1
用于水果识别的yolov数据集,可以用于做各种计算机视觉的项目
2024-06-03 12:34:49 23.74MB 数据集
1
用于darknet框架下深度学习的数据集,自己收集的图片制作而成,一共1600余张,包括手工标注的xml文件,可以直接用于训练使用
1
车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。 纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(192010202) 代表有1920个时间段,1020个区域,2个特征分别为区域的入流量与出流量
2024-06-01 21:17:29 1.11MB 深度学习 python 数据集
1
果蔬识别数据集 经过测试的数据集 如果需要其他的也可以联系作者
2024-06-01 11:44:12 27.84MB yolov5
1
今天小编就为大家分享一篇将自己的数据集制作成TFRecord格式教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-05-31 12:02:53 83KB 数据集 TFRecord格式
1
阈值分割源码matlab 用于新型腹部数据集的皮肤分割的深度学习技术 介绍 该存储库提供了[]中研究的皮肤分割方法的代码,主要是Mask-RCNN,U-Net,全连接网络和用于阈值化的MATLAB脚本。 该算法主要是为了使用RGB图像对创伤患者进行腹部皮肤分割而开发的,这是正在进行的研究工作的一部分,该研究工作旨在开发用于创伤评估的自主机器人[] []。 机器人腹部超声系统具有摄像头查看的腹部区域,以及相应的分段式皮肤面罩。 腹部皮肤数据集的信息 该数据集包含从Google图像搜索在线检索的1,400幅腹部图像,这些图像随后进行了手动分段。 选择图像以保留不同种族的多样性,从而防止分割算法中的间接种族偏见; 700张图像代表肤色较深的人,其中包括非洲,印度和西班牙裔群体,而700张图像代表肤色较浅的人,例如高加索人和亚洲裔群体。 总共选择了400张图像来代表体重指数较高的人,在明亮和黑暗类别之间平均分配。 在数据集准备中,还考虑了个人之间的差异,例如头发和纹身的覆盖范围,以及阴影等外部差异。 图片尺寸为227x227像素。 皮肤像素占整个像素数据的66%,每个单个图像的平均值为54.4
2024-05-30 11:29:55 81.38MB 系统开源
1
数据集中约包含2000+张水果图像,一共有五类水果已经分好类存在不同水果名的文件夹下,五类水果分别为apple、banana、grape、orange、pear。 为了确保数据集的多样性和代表性,我们从多个来源收集了水果图像,并对其进行了 筛选和整理。在构建数据集的过程中,我们特别注意确保每个类别的样本数量均衡, 以避免数据不平衡对模型训练和测试结果的影响。此外,为了验证模型的泛化能力,我们 特意准备了另一个独立的测试数据集 Testreal,以更全面地评估模型在未知数据上的表 现。 在图像的选择和整理过程中,我们力求保证图像的质量和多样性,以确保模型能够对 不同种类和不同外观的水果进行准确识别。我们相信这样的数据集构建能够为研究的实 验结果提供可靠的基础,同时也为相关研究提供了具有挑战性和实用性的数据资源
2024-05-29 17:32:30 166.24MB 数据集 图像分类 水果识别 机器学习
1
提取NASA数据集B0005,B0006,B0007,B00018,B00025,B00026,B00027,B00028容量
2024-05-29 10:42:25 2KB 数据集
1
CVRP问题下的VRPTW变体的测试数据集,常用来测试验证算法性能
2024-05-28 18:55:18 22KB 车辆路径 VRPTW
1