内容概要:本文详细介绍了基于强化学习的车间调度方法,特别是深度Q网络(DQN)和近端策略优化算法(PPO)的应用。文章首先概述了车间调度问题及其面临的挑战,接着分别阐述了DQN和PPO的核心原理、代码实现及应用场景。DQN通过Q学习结合神经网络处理高维状态空间,适用于离散动作空间;PPO则通过策略梯度直接优化策略网络,更适合连续动作空间和多目标优化。文中还提供了详细的代码示例,展示了这两种算法的具体实现方式,并讨论了它们各自的优缺点。此外,文章强调了状态设计和奖励函数设计的重要性,并给出了实际应用中的注意事项。 适合人群:对强化学习感兴趣的科研人员、工程师和技术爱好者,尤其是那些关注智能制造和工业自动化领域的专业人士。 使用场景及目标:①帮助读者理解DQN和PPO在车间调度中的应用;②指导读者进行相关算法的实际编码实现;③为解决复杂多变的生产环境中的调度问题提供新的思路和方法。 其他说明:文章不仅讲解了理论知识,还提供了丰富的代码实例,便于读者理解和实践。同时提醒读者在实际应用中需要注意的问题,如状态表示、奖励函数设计等。
2025-10-27 10:53:31 202KB
1
标题基于SpringBoot与Vue的无人机共享管理系统设计研究AI更换标题第1章引言介绍无人机共享管理系统的研究背景、意义、现状,以及论文的方法和创新点。1.1研究背景与意义阐述无人机共享管理系统的应用背景及其重要性。1.2国内外研究现状分析国内外在无人机共享管理系统方面的研究进展。1.3研究方法以及创新点概述本文的研究方法和系统设计的创新点。第2章相关理论介绍与无人机共享管理系统相关的SpringBoot、Vue框架及数据库技术等理论基础。2.1SpringBoot框架阐述SpringBoot框架的特点及其在系统开发中的应用。2.2Vue.js框架介绍Vue.js框架的响应式特性及其在前端开发中的作用。2.3数据库技术讨论数据库技术在无人机共享管理系统中的数据存储与管理作用。第3章系统设计详细介绍无人机共享管理系统的设计方案,包括系统架构、功能模块及数据库设计。3.1系统架构设计给出系统的整体架构,包括前端、后端及数据库的连接方式。3.2功能模块设计详细介绍系统的各个功能模块,如用户管理、无人机管理、订单管理等。3.3数据库设计阐述数据库的设计思路,包括表结构、字段设置及关系模型。第4章系统实现阐述无人机共享管理系统的实现过程,包括开发环境搭建、代码实现及系统测试。4.1开发环境搭建介绍系统开发所需的软件、硬件环境及配置步骤。4.2代码实现详细介绍系统各功能模块的代码实现过程。4.3系统测试阐述系统测试的方法、步骤及测试结果分析。第5章研究结果与分析呈现无人机共享管理系统的实现结果,包括系统界面、功能测试及性能分析。5.1系统界面展示通过截图展示系统的各个功能界面。5.2功能测试结果分析系统各功能模块的测试结果,验证其正确性。5.3性能分析对系统的响应时间、吞吐量等性能指标进行分析。第6章结论与展望总结无人机共享管理系统的研究成果,并展望未来的研究方向。6.1研究结论概
2025-10-27 10:45:39 9.2MB springboot vue java mysql
1
内容概要:本文详细介绍了60V/5A、300W输出功率的工业电源设计方案,采用LLC谐振拓扑结构,结合STM32G4系列MCU进行数字控制。文中涵盖了主拓扑选择、谐振元件选型、PWM配置、电压环和电流环控制算法、保护电路设计以及PCB布局优化等多个方面。作者通过实际开发经验和调试心得,分享了许多实用的技术细节和注意事项,如中心对齐PWM模式的应用、死区时间调整、改良版PID算法、滑动窗口滤波、硬件和软件过流保护结合等。此外,还讨论了散热设计和EMI整改等问题。 适合人群:从事电源设计的工程师和技术爱好者,尤其是对中高功率电源设计感兴趣的读者。 使用场景及目标:适用于需要高效、稳定、带有通信功能的工业电源应用场景。目标是帮助读者掌握LLC谐振拓扑的设计要点,提高电源效率和可靠性,减少开发过程中常见的错误和陷阱。 其他说明:文中提供了大量实际代码片段和调试技巧,有助于读者更好地理解和应用相关技术。同时,强调了硬件和软件相结合的保护机制,确保系统在极端情况下的安全性。
2025-10-27 08:50:41 2.57MB
1
基于三菱PLC与组态王鸡舍环境监测系统的温湿度控制技术养鸡场应用研究,基于三菱PLC与组态王技术的鸡舍温湿度智能控制系统,基于三菱PLC和组态王鸡舍温湿度控制养鸡场 ,基于三菱PLC; 温湿度控制; 养鸡场; 组态王鸡舍控制; 鸡舍环境调节,基于三菱PLC与组态王鸡舍温湿度智能控制养鸡场方案 随着现代化养殖业的发展,智能控制技术在鸡舍环境监测及管理中发挥着越来越重要的作用。本文将深入探讨基于三菱PLC与组态王技术在鸡舍温湿度控制中的应用研究。三菱PLC(可编程逻辑控制器)以其高稳定性、强大的控制能力、丰富的指令集等特性在工业控制领域广泛运用。组态王作为一种监控软件,与PLC结合后可以更直观地实现对设备的监控与管理。 在鸡舍环境监测系统中,温度和湿度是两个至关重要的参数,它们直接影响到鸡的生长健康和生产效率。因此,构建一个精准有效的温湿度智能控制系统对于现代化养鸡场是十分必要的。通过对温湿度数据的实时监测与分析,该系统可以自动调节鸡舍内的温度和湿度,以满足鸡只的最佳生长环境。此系统还可以通过预警机制在温湿度偏离正常范围时及时通知管理人员,确保鸡舍环境始终处于理想状态。 智能控制系统的设计和实现涉及多个环节。需要选用合适的传感器来监测鸡舍内的温湿度。这些传感器需要具备足够的灵敏度和精确度,以确保能够及时反映环境的变化。然后,传感器采集到的数据将被传递给PLC。PLC根据预设的控制逻辑进行运算处理,并输出相应的控制信号。控制信号通过驱动电路作用于加热、制冷、加湿或除湿设备,实现对鸡舍温湿度的精确调节。 在软件方面,组态王软件提供了一个图形化的用户界面,使得管理人员可以通过操作界面直观地看到鸡舍内的实时数据,并进行远程控制。同时,组态王还支持数据记录和历史数据分析,帮助管理人员分析鸡舍环境的历史变化,优化控制策略。 在实际应用中,鸡舍温湿度智能控制系统具有如下优点:一是提高了鸡舍环境管理的自动化水平,减轻了人工管理的工作量;二是通过精确控制环境参数,提高了鸡只的生长效率和成活率;三是系统的预警机制减少了因环境问题导致的鸡只疾病风险,降低了经济损失。 为了确保智能控制系统的可靠性,系统设计时需考虑到冗余和备份机制,以便在部分设备发生故障时系统仍能正常运行。此外,系统的安装和调试必须由专业人员完成,确保系统稳定运行和长期可靠性。 基于三菱PLC与组态王技术的鸡舍温湿度智能控制系统,不仅可以有效地提高养鸡场的自动化管理水平,还能为鸡只提供一个稳定舒适的生长环境,对提升养鸡场的整体经济效益具有重要意义。
2025-10-26 22:58:28 3.4MB xbox
1
内容概要:本文详细介绍了基于MATLAB/Simulink R2015b平台的三种PWM调制方法(双极性PWM、单极性PWM、正弦PWM)下的逆变电路仿真模型。文章首先概述了PWM调制逆变电路的重要性和应用背景,随后分别介绍了这三种PWM调制方法的工作原理和特点。接着,文章详细描述了仿真模型的搭建过程,包括电路参数设置、信号源设置和波形生成等模块的具体操作步骤。通过对仿真结果的分析,展示了不同PWM调制方式对逆变电路性能和稳定性的显著影响,如双极性PWM和正弦PWM能产生更平滑的电流波形,而单极性PWM在某些情况下更具节能效果。最终,文章总结了不同PWM调制方式的选择依据和仿真条件的准确性对于实际工程应用的重要性。 适合人群:从事电力电子、自动化控制领域的研究人员和技术人员,尤其是对PWM调制技术和逆变电路感兴趣的读者。 使用场景及目标:适用于希望深入了解PWM调制逆变电路工作原理的研究人员和技术人员,旨在帮助他们掌握不同PWM调制方法的特点和应用场景,从而为实际工程项目提供理论支持和技术指导。 其他说明:本文不仅提供了详细的仿真模型搭建步骤,还通过具体的仿真结果对比分析,使读者能够直观地理解各种PWM调制方法的优势和局限性。
2025-10-26 21:28:13 1.9MB
1
自动驾驶控制技术:基于车辆运动学模型MPC跟踪仿真的研究与实践——Matlab与Simulink联合仿真应用解析,自动驾驶控制-基于车辆运动学模型MPC跟踪仿真 matlab和simulink联合仿真,基于车辆运动学模型的mpc跟踪圆形轨迹。 可以设置不同车辆起点。 包含圆,直线,双移线三条轨迹 ,核心关键词:自动驾驶控制;MPC跟踪仿真;基于车辆运动学模型;圆形轨迹;Matlab联合仿真;双移线轨迹。,"MATLAB与Simulink联合仿真:基于车辆运动学模型的MPC自动驾驶控制圆形轨迹跟踪"
2025-10-26 21:01:41 286KB
1
# 基于ESP8266和ESP32的SimHub WiFi仪表盘系统 ## 项目简介 此项目是一个基于ESP8266和ESP32的SimHub WiFi仪表盘系统。其主要功能是通过WiFi与SimHub软件进行通信,以在自定义硬件仪表板上显示赛车模拟器的实时数据,如速度、转速、燃料、温度等。该项目支持ESP8266和ESP32两种芯片平台,提供了灵活的硬件配置和强大的功能。 ## 项目的主要特性和功能 1. WiFi通信: 通过WiFi与SimHub软件建立连接,实现实时数据交换。 2. 硬件支持: 支持多种硬件组件,如OLED屏幕、旋转编码器、按钮矩阵和RGB LED等。 3. 串行通信: 通过串行通信接收和发送数据。 4. 仪表板状态更新: 实时显示速度、转速、燃料、温度等模拟赛车数据。 5. 旋转编码器控制: 通过旋转编码器进行功能控制。 6. 按钮控制: 通过按钮进行菜单导航和设置更改。 7. RGB LED控制: 用于显示各种颜色或动画。
2025-10-26 20:25:22 584KB
1
在电子工程领域,运算放大电路是基础也是极为重要的组成部分,它在信号的放大、比较、运算等方面有着广泛的应用。运算放大器(Op-Amp)是一种具有高增益、高输入阻抗、低输出阻抗的电路组件,能够对输入信号进行放大处理。其核心性能主要体现在增益大小、带宽、输入输出阻抗、噪声水平、稳定性以及温度特性等多个方面。基于multisim软件的运算放大电路仿真,为电子工程师提供了一个虚拟的实验平台,通过这个平台,可以在不接触实际电路的情况下进行电路设计、调试和分析。 在进行运算放大电路设计时,工程师首先需要确定电路的功能目标和性能指标,如放大倍数、输入输出范围、频率响应等。设计过程中需要考虑运算放大器的类型(如理想型、实际型)、供电方式、外围电路设计(包括偏置电路、反馈网络等)以及温度、电源电压变化对电路性能的影响。运算放大器的内部电路通常包含差分输入级、中间放大级和输出级三个主要部分,而外围电路的设计则包括选择合适的电阻、电容以及其他必要的组件,以实现期望的电路功能和性能。 在利用multisim进行仿真时,工程师可以利用其丰富的元件库选择适合的运算放大器模型,并通过电路仿真软件提供的虚拟仪表(如示波器、信号发生器等)对电路进行测试。仿真过程中,工程师能够直观地观察到电路在不同工作条件下的响应情况,从而调整电路参数或结构来优化电路性能。同时,由于仿真软件具有修改参数后实时反馈电路响应的特性,使得设计者可以更加灵活和快速地对电路进行迭代设计。 此外,multisim还支持进行瞬态分析、交流小信号分析、噪声分析以及温度分析等,帮助设计者深入理解电路在不同条件下的工作状态。通过这些分析,设计者能够评估电路的稳定性、频率响应和噪声特性,确保设计的电路在实际应用中能够稳定可靠地工作。 基于multisim的运算放大电路仿真技术,是现代电子工程设计中不可或缺的一部分,它不仅能够帮助工程师进行电路的预设计和验证,还能够显著提高设计效率和电路的性能质量。通过这种仿真技术,工程师可以更加科学和系统地完成电路设计工作,减少实际搭建电路时可能遇到的问题,节省设计时间和成本。
2025-10-26 20:18:37 1.27MB multisim 运算放大电路
1
SFCW(Stepped Frequency Continuous Wave)雷达仿真技术是一项前沿科技,它在探测领域内具有重要的应用价值。在该领域内,gprMax软件因其能够模拟电磁波在地下介质中的传播行为,而被广泛用于地下探测雷达的仿真研究中。gprMax软件是一款基于有限差分时域法(FDTD)的工具,能够有效地模拟电磁波在复杂介质中的传播、散射和反射过程,结合MATLAB强大的数据处理和分析功能,可以进一步深入理解雷达波与目标物体相互作用的物理机制。 在实际应用中,SFCW雷达系统通过发射一系列频率逐渐变化的连续波信号来获取目标信息。这种雷达系统能够利用小的瞬时带宽获得较大的合成带宽,从而达到高距离分辨率的效果。通过在MATLAB环境中结合gprMax软件,研究者可以构建模型并模拟SFCW雷达信号的发射、传播、反射和接收过程,以此来研究雷达信号在不同条件下的特性。 这种仿真技术在研发新式雷达系统、改进现有系统以及评估其性能方面具有显著优势。通过仿真实验,研究人员能够节省大量的实际测试成本和时间,同时可以模拟现实条件下难以达到的极端测试环境。此外,仿真实验不受天气、地理环境等外在因素的影响,可以更加安全和高效地进行。对于雷达信号处理的研究而言,仿真环境提供的数据具有高度的可控性和可重复性,便于理论验证和算法优化。 在本压缩包文件中,提供了完整的SFCW雷达仿真数据源代码,代码中包含了模拟雷达信号处理的全部关键步骤,例如信号的生成、发射、传播、目标反射以及数据的接收和处理等。该代码使用MATLAB编写,得益于MATLAB强大的矩阵运算能力和内置的信号处理工具箱,能够方便地进行复杂数学运算和数据可视化。同时,通过调用gprMax模型,代码能够模拟电磁波在地下介质中的传播过程,这为地下探测提供了一个精确的仿真环境。 代码中还包含了一系列数据处理和分析的模块,这些模块涉及信号预处理、频域分析、时域分析、目标检测和识别等多个方面。研究人员可以利用这些模块对模拟数据进行深入分析,评估不同信号处理算法的性能。例如,通过频域分析模块,可以对信号进行频谱分析,从而识别出信号中的有用成分;时域分析模块则可以用来观察信号随时间变化的特性等。 值得一提的是,此类仿真数据源代码对于教学和培训同样具有重要价值。在教育和培训场景中,可以通过修改代码中的参数来模拟不同的雷达工作条件,让学生更加直观地理解雷达信号处理的原理和过程。此外,代码也可以作为科研人员进行算法验证和测试的平台,为雷达信号处理领域提供创新和发展的可能性。 在实际工程应用中,SFCW雷达仿真技术除了用于地下探测,还可以应用于机场安检、医疗成像、遥感探测和空间探索等多个领域。通过模拟实际环境,仿真技术能够帮助工程师优化雷达设计,提高系统的性能和可靠性。 此外,该仿真代码还能帮助工程师进行复杂的系统设计和参数优化,例如天线设计、信号编码和解码、杂波抑制以及干扰管理等。通过对仿真数据的分析,可以评估不同设计选择对系统性能的影响,从而指导实际硬件和软件的开发。在系统的部署阶段,仿真数据也能够用于训练和验证系统的自动化和人工智能算法,提高系统的智能化水平。 在科研和教育领域,该仿真技术是深入理解SFCW雷达工作原理和提高雷达信号处理能力的重要工具。通过仿真实验,研究者能够更加直观地观察到雷达信号与目标相互作用的过程,从而为理论研究提供实验支撑。同时,由于仿真技术的可重复性和可操控性,它能够帮助学生和初学者快速掌握雷达系统设计和信号处理的关键知识点。 基于gprMax和MATLAB的SFCW雷达仿真数据源代码,不仅能够为工程设计提供高效工具,还能为科研和教育提供丰富的研究和学习资源,推动雷达技术的持续发展。
2025-10-26 15:58:36 112.48MB matlab
1
内容概要:本文探讨了卡车联合无人机配送路径规划问题,特别是基于FSTSP(固定起点旅行商问题)和D2TSP(双重旅行商问题)的遗传算法解决方案及其Matlab代码实现。文中详细介绍了卡车与两架无人机协同工作的具体流程,包括无人机的起降时间点和服务点分配方案。通过遗传算法优化路径规划,考虑了卡车油耗、无人机能耗以及时间窗口惩罚等因素,最终实现了最低成本的路径规划。此外,还讨论了算法中的基因结构设计、适应度函数、交叉算子和可视化展示等方面的技术细节。 适合人群:对物流配送系统优化感兴趣的科研人员、算法开发者及物流行业从业者。 使用场景及目标:适用于需要优化多模态运输系统的场景,如城市内的紧急物资配送、商业区货物派送等。目标是通过合理的路径规划,减少运输成本并提高配送效率。 其他说明:文中提到的遗传算法参数调整对于获得更好的解质量至关重要,同时也强调了实际应用中可能遇到的问题及解决方案,如单行道处理和无人机续航管理等。
2025-10-26 13:11:48 534KB
1