基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码。基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码基于深度学习的疫情防控口罩佩戴识别检测算法研究与实现项目源码
基于深度学习的常见作物病虫害识别系统的设计与实现源代码+论文+教程。 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 云计算技术与人工智能深度学习的计算机视觉技术,开发了一套开源、跨平 台、易使用的农业害虫识别系统,大幅降低了人工智能技术使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。初步研究结果如下: 1. 收集、筛选、预处理并开源共享了大量的农作物害虫图像数据集。首先 选取了 41 类农作物常见害虫作为研究对象;通过网络检索、数据库收录和实地 拍摄等方法,收集了一万余张害虫图像;基于 GBVS 和 GrubCut 自动分割提取 出了数据量 4:1 的训练和测试数据集,用于算法训练和效果测试。 2. 实现了深度学习算法对农业害虫数据的迁移学习,达到了对已收录害虫 93%高精度识别。
人工智能基于深度学习论文大合集比如:基础目标分类论文、目标检测论文、表情识别论文等等.zip 简单列举如下: 3D面部重建论文 人脸识别论文 保罗艾克曼论文 关键点检测论文 分布式计算论文 卷积神经网络论文 图像分割论文 图像处理论文 面部表情识别论文 情绪分析论文 机器学习论文 目标检测论文 网络优化 肿瘤检测 人工智能基于深度学习论文大合集比如:基础目标分类论文、目标检测论文、表情识别论文等等.zip 简单列举如下: 3D面部重建论文 人脸识别论文 保罗艾克曼论文 关键点检测论文 分布式计算论文 卷积神经网络论文 图像分割论文 图像处理论文 面部表情识别论文 情绪分析论文 机器学习论文 目标检测论文 网络优化 肿瘤检测
基于深度学习的骨骼行为识别项目论文合集。 简单列举如下:(一小部分) 基于二维骨架运动特征向量的行为识别项目 基于图卷积网络的行为识别方法 基于残差时空图卷积网络的3D人体行为识别项目 基于骨骼时序散度特征的人体行为识别算法 多尺度方法结合卷积神经网络的行为识别项目 多模态轻量级图卷积人体骨架行为识别方法 多流卷积神经网络的骨架行为识别项目
主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)特征提取:将点阵转化成更高级别图像表述—如形状、运动、颜色、纹理、空间结构等,?在尽可能保证稳定性和识别率的前提下,对庞大的图像数据进 行降维处理。 (4)基于运动特征的提取:提取动态图像序列的运动特征 (5)分类判别:包括设计和分类决策(在表情识别的分类器设计和选择阶段,主要有以下方法:
基于深度学习的车牌识别研究-论文研究资料,包含图像识别,手写字符等
2022-06-10 15:31:54 73.74MB 图像识别
1
基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序项目源码基于深度学习神经网络和PYQT5的GUI可视化手写数字识别小程序
2022-06-10 14:06:29 4.54MB 人工智能 深度学习 神经网络 pyqt5
针对目前输送带损伤检测方法缺乏对输送带撕裂以外其他损伤类型研究的问题,提出一种基于深度学习的矿用输送带损伤检测方法,通过Yolov4tiny目标检测网络对输送带损伤类型进行分类。Yolov4-tiny目标检测网络以CSPDarknet53-tiny作为主干特征提取网络,借鉴Resnet残差思想,使用残差块防止深层网络中高层语义特征丢失,同时采用特征金字塔网络实现高低层语义信息融合,达到提高检测精度的目的;将CSPDarknet53-tiny中的2个有效特征层输入预测网络Yolo Head,通过得分排序和非极大值抑制算法对预测框进行筛选,从而预测输送带损伤类型。实验结果表明,Yolov4〖HT5,6”〗-〖HT5〗tiny目标检测网络在输送带损伤数据集上对表面划伤、撕裂、表面破损和击穿4种损伤类型检测的平均精度分别为9936%,9485%,8930%,8676%,平均精度均值达9257%;与Faster-RCNN,RFBnet,M2det,SSD,Yolov3,EfficientDet和Yolov4目标检测网络相比,Yolov4-tiny目标检测网络在数据集上取得了最快的检测
2022-06-10 09:25:57 1.47MB 带式输送机 损伤检测
1
基于深度学习的高空危险行为预警系统源码.zip
2022-06-10 09:10:56 3.17MB 深度学习
基于深度学习的商品推荐系统,高性能,可承受高并发,可跨平台。 技术栈 项目用到的技术如下: 语言:Python3 Java Web端:Layui,Flask,Nginx,Gevent,Flask_Cache 模型训练: PaddleRec , PaddlePaddle 深度学习模型:DSSM, DeepFM 向量召回:milvus 数据存储: Redis 模型推理: PaddleServing 模块通信:gRPC,protobuf 快速开始 项目部署依赖 Python3、PaddlePaddle2.2.2、PaddleServing、milvus1.0、redis、nginx、Gevent
2022-06-10 09:10:52 6.65MB 深度学习