基于深度学习的矿用输送带损伤检测方法-论文

上传者: 38545517 | 上传时间: 2022-06-10 09:25:57 | 文件大小: 1.47MB | 文件类型: PDF
针对目前输送带损伤检测方法缺乏对输送带撕裂以外其他损伤类型研究的问题,提出一种基于深度学习的矿用输送带损伤检测方法,通过Yolov4tiny目标检测网络对输送带损伤类型进行分类。Yolov4-tiny目标检测网络以CSPDarknet53-tiny作为主干特征提取网络,借鉴Resnet残差思想,使用残差块防止深层网络中高层语义特征丢失,同时采用特征金字塔网络实现高低层语义信息融合,达到提高检测精度的目的;将CSPDarknet53-tiny中的2个有效特征层输入预测网络Yolo Head,通过得分排序和非极大值抑制算法对预测框进行筛选,从而预测输送带损伤类型。实验结果表明,Yolov4〖HT5,6”〗-〖HT5〗tiny目标检测网络在输送带损伤数据集上对表面划伤、撕裂、表面破损和击穿4种损伤类型检测的平均精度分别为9936%,9485%,8930%,8676%,平均精度均值达9257%;与Faster-RCNN,RFBnet,M2det,SSD,Yolov3,EfficientDet和Yolov4目标检测网络相比,Yolov4-tiny目标检测网络在数据集上取得了最快的检测

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明