基于分词与BP网络的文本分类 首先下载整个文件,BP文本分类-语义特征提取.rar主要存放了相关的数据集 代码主要包括: 1.特征提取 首先对文本信息进行分词处理,采用基于字符串匹配的方法: 依次截取一到多个词,并与字典库进行匹配。如二狗,如果匹配到字典中有这个词,则将其分为一个词;发现字典中没有与之匹配的,则说明这个不是一个词语,进行顺序操作, 2.得到分词后的文本之后,就是转换成数字编码,因此电脑没办法识别汉字。这一部分叫特征表示,即用数字的方式表示中文文本,采用的方法是基于词带模型的特征表示 3.通过2我们将文本表示成了数字,但是这样的表示通常都是稀疏的,为此我们利用降维方法,消除掉这些冗余特征。 4. 文本分类,采用的就是bp网络(1)如pca的降维数,维数过高,包含冗余数据,过低又会删除掉重要信息。(2)bp网络结构的调整,如隐含层节点数,学习率等
2023-03-06 10:05:56 3.48MB BP神经网络 文本分类器 MATLAB
1
经验模态分解划分高频、低频和残差分类用粒子群优化算法对支持向量机进行预测
2023-03-04 18:32:00 651KB matlab
1
bp神经网络matlab仿真,可以直接运行
2023-03-01 09:37:28 41KB 电学
1
自适应粒子群优化是一种优化算法,它是粒子群优化(Particle Swarm Optimization,PSO)的一种变体。与传统的PSO不同,APSO使用自适应策略来调整算法的参数,以提高算法的性能和收敛速度。 APSO的主要思想是根据群体的收敛情况动态调整算法的参数。APSO的核心算法与PSO类似,由粒子的速度和位置更新规则组成。每个粒子通过与局部最优解和全局最优解比较来更新自己的位置和速度。 APSO的另一个关键之处是学习因子的自适应调整。在每个迭代中,APSO会计算每个粒子的适应度值。如果适应度值的方差较小,则学习因子的值会变小,以便更加收敛到最优解。相反,如果适应度值的方差较大,则学习因子的值会变大,以便更好地探索解空间。
2023-02-27 15:51:35 3KB pso 算法优化
1
为了改善针对一般非线性离散时间系统的控制性能,引入“拟伪偏导数”概念,给出了一般非线性离散时间系统沿迭代轴的非参数动态线性化形式,并综合BP神经网络以及模糊控制各自的优点,提出了基于BP算法无模型自适应迭代学习控制方案。仿真结果表明,该控制器对模型有较强的鲁棒性和跟踪性。
2023-02-27 15:26:40 389KB BP算法
1
In matlab, the optimization process based on BP neural network combined with genetic algorithm includes the problem description of text documents.
基于BP神经网络的Al2O3-TiC复合陶瓷刀具力学性能预测,谷美林,高洁,针对复合陶瓷刀具材料的力学性能受很多因素影响的情况,利用人工神经网络的BP算法,结合MATLAB神经网络工具箱,建立了Al2O3-TiC复合陶�
2023-02-23 18:28:31 606KB 首发论文
1
基于粒子群PSO优化算法的ELM网络,并对比优化后的EML的预测性能+含代码操作演示视频 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体可观看提供的操作录像视频跟着操作。
2023-02-23 17:14:29 994KB 算法 网络 PSO优化 ELM网络
net=init(net); net=newff([-1,1],[10,6,1],{'tansig','logsig','purelin'},'traingdm');
2023-02-23 08:26:43 817B bp神经网络 MATLAB
1
可以实现简单的PID参数调整进而实现PID控制
2023-02-22 16:09:57 27KB pid BP神经网络 simulink
1