交互式多模型滤波(IMM) 的交互环节使得系统状态量不再服从单纯的高斯分布, 用现有方法对其概率分布的估计存在较大的误差. 对此, 考虑到模型的混合概率是时变的, IMM的交互过程可以用非线性方程来描述, 因而采用容积卡尔曼滤波(CKF) 中的容积法则对高斯随机变量经非线性函数传播后的概率分布进行估计, 并从理论上证明了容积法则的近似精度. 仿真实验表明, 由于提高了对交互后随机变量概率分布的估计精度, 所提出的方法能够有效改善IMM在量测噪声较大时的滤波效果.
1
在改进算法中,步长因子与误差信号自相关函数之间建立了一种改进的非线性函数关系。将改进算法应用到系统辨识中,通过计算机仿真结果看出,自适应滤波性能在收敛速度和稳态失调误差等方面得到改善。
1
各种滤波算法的比较
2022-02-26 10:11:11 1.06MB 滤波算法
1
粒子滤波在单目标跟踪多目标跟踪电池寿命预测中的应用-粒子滤波算法原理及在多目标跟踪中的应用(Matlab程序).ppt 本帖最后由 huangxu_love 于 2013-7-26 12:50 编辑 推荐一本学习粒子滤波原理的好资料《粒子滤波原理及应用仿真》,本手册主要介绍粒子滤波的基本原理和其在非线性系统的应用。同时本手册最大的优点是介绍原理和应用的同时,给出实现例子的matlab代码程序,方便读者对照公式,理解代码。因此,它是相关方面的研究者快速上手和进入研究领域的快捷工具。同时,对于有一定基础的研究者,可以在本手册提供代码的基础上,做算法进一步改进和深入研究。 如果你有编程或者原理咨询,可以联系我的QQ345194112. 目  录第一部分 原理篇                                                                1第一章 概述                                                                  11.1 粒子滤波的发展历史                                                        11.2 粒子滤波的优缺点                                                         21.3 粒子滤波的应用领域                                                        3第二章 蒙特卡洛方法                                                          42.1 概念和定义                                                                42.2 蒙特卡洛模拟仿真程序                                                     52.2.1硬币投掷实验(1)                                                        52.2.2硬币投掷实验(2)                                                      52.2.3古典概率实验                                                              64.2.4几何概率模拟实验                                                         72.2.5复杂概率模拟实验                                                          72.3 蒙特卡洛理论基础                                                           102.3.1大数定律                                                                  102.3.2中心极限定律                                                              102.3.3蒙特卡洛的要点                                                           112.4 蒙特卡洛方法的应用                                                        132.4.1 Buffon实验及仿真程序                                                      132.4.2 蒙特卡洛方法计算定积分的仿真程序                                          14第三章 粒子滤波                                                              193.1 粒子滤波概述                                                              193.1.1 蒙特卡洛采样原理                                                         193.1.2 贝叶斯重要性采样                                                         203.1.3 序列重要性抽样(SIS)滤波器                                                   203.1.4 Bootstrap/SIR滤波器                                                       223.2 粒子滤波重采样方法实现程序                                                233.2.1 随机重采样程序                                                            243.2.2 多项式重采样程序                                                         253.2.3 系统重采样程序                                                          263.2.4 残差重采样程序                                                            273.3 粒子滤波原理                                                             283.3.1 高斯模型下粒子滤波的实例程序                                              28第二部分 应用篇                                                                33第四章 粒子滤波在单目标跟踪中的应用                                          334.1 目标跟踪过程描述                                                         334.2 单站单目标跟踪系统建模                                                    344.3 单站单目标观测距离的系统及仿真程序                                        374.3.1 基于距离的系统模型                                                      374.3.2 基于距离的跟踪系统仿真程序                                             384.4 单站单目标纯方位角度观测系统及仿真程序                                    434.4.1 纯方位目标跟踪系统模型                                                  434.4.2 纯方位跟踪系统仿真程序                                                  444.5 多站单目标纯方位角度观测系统及仿真程序                                     474.5.1 多站纯方位目标跟踪系统模型                                               474.5.2 多站纯方位跟踪系统仿真程序                                              48第五章 粒子滤波在多目标跟踪中的应用                                          545.1 多目标跟踪系统建模                                                        545.1.1 单站多目标跟踪系统建模                                                  545.1.2 多站多目标跟踪系统建模                                                  555.1.3 单站多目标线性跟踪系统的建模仿真程序                                     555.1.4 多站多目标非线性跟踪系统的建模仿真程序                                  575.2 多目标跟踪分类算法                                                        615.2.1 多目标数据融合概述                                                       615.2.2 近邻法分类算法及程序                                                     625.2.3 近邻法用于目标跟踪中的航迹关联及算法程序                                665.2.4 K-近邻法分类算法                                                          695.3 粒子滤波用于多目标跟算法中的状态估计                                     705.3.1 原理介绍                                                                 705.3.2 基于近邻法的多目标跟踪粒子滤波程序                                      71第六章 粒子滤波在电池寿命预测中的应用                                         766.1 概述                                                                     766.2 电池寿命预测的模型                                                        786.3 基于粒子滤波的电池寿命预测仿真程序                                        81
2022-02-25 22:36:59 520KB matlab
1
粒子滤波及改进算法比较,将各种算法进行比较和对比
通过对变步长 LMS 自适应滤波算法和提升小波变换理论进行研究,将两种算法换相结合,提出一种新的提升小波变步长 LMS自适应滤波改进算法;根据信号特征对更新算子和预测算子自适应的构造,对正交分解的信号进行变步长 LMS自适应消噪,提高了收敛速度和稳定性;通过仿真分析,证明了改进的提升小波变步长 LMS滤波算法具有较快的收敛速度和更强的抑噪能力;最后,将提出的方法应用于低速重载齿轮箱的故障诊断中,分析结果表明,该方法是一种非常有效的故障特征处理方法。
2022-02-25 21:41:23 1.16MB 自然科学 论文
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2022-02-25 16:04:58 896KB
1
基于立体视觉和滤波算法的无人船环境感知技术研究.caj
2022-02-23 09:10:50 6.39MB 算法 环境感知技术 无人船 立体视觉
1
卡尔曼滤波算法C语言实现
2022-02-21 20:12:32 468KB 卡尔曼滤波 C语言
1
卡尔曼滤波入门介绍以及c语言实现
2022-02-21 20:10:43 218KB 卡尔曼滤波 C语言
1