微分方程理论作为一门学科的重要性在于提取和建模各种现象的核心部分,以了解物理量的动力学,并预测未来的动力学。讲师将重点关注以下内容:换句话说,不用说您应该掌握微分方程的基本理论,但是为了避免落入理学院数学系的理论,请牢记理论与应用之间的平衡。(没有申请的学术是空的),充分利用MATLAB,旨在发展为专业学科(机械工程、电气工程、化学、建筑等)的问题解决。如果学生掌握了本次讲座的内容, (1)线性常微分方程解的推导和解轨迹可用相图表示。 (2) 不能求解的非线性常微分方程的精确解可以用它的线性化表示,可以掌握全局解的动力学。 (3) 学习对历史上重要的方程(van der Pol 方程、Lotka-Volterra 方程等)建模,学习稳定性的概念和非线性的处理。 (4) 通过MATLAB学习微分方程的数值解,检验解的精度。 (5)作为工程师的未来,未解决的问题可以用微分方程建模,形成技术创
2021-10-16 15:30:47
10.79MB
matlab
1