使用LSTM、GRU、BPNN进行时间序列预测源码+数据集(课设源码).zip 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业 使用LSTM、GRU、BPNN进行时间序列预测 Jupyter Notebook 课程大作业
2022-12-24 20:26:50 58KB JupyterNotebook LSTM GRU BPNN
隐马尔可夫模型 (HMM) 是一种信号预测模型,已被用于预测经济状况和股票价格。 该项目旨在实现将机器学习算法应用于股票市场的目标。 长短期记忆模型(LSTM)保证了在新的时间状态下,随着隐藏层不断叠加输入序列,之前的信息可以继续向后传播而不会消失。我们的主要目的是通过预测一只股票的涨跌 使用 HMM-LSTM。 Experiment with 4 different models: GMM-HMM XGB-HMM GMM-HMM-LSTM XGB-HMM-LSTM Compared with the results: train_set
2022-12-23 15:27:44 2.56MB HMM-LSTM GMM-HMM XGB-HMM GMM-HMM-LSTM
提取均值信号特征的matlab代码两个扬声器的基于 LSTM/BLSTM 的 PIT 在多通话者混合语音分离和识别方面取得的进展,通常被称为“鸡尾酒会问题”,并没有那么令人印象深刻。 尽管人类听众可以很容易地感知混合声音中的不同来源,但对于计算机来说,同样的任务似乎极其困难,尤其是当只有一个麦克风记录混合语音时。 1. 运行性能 注意:训练集和验证集包含通过从 WSJ0 集中随机选择说话者和话语生成的两个说话者混合,并以 -2.5 dB 和 2.5 dB 之间统一选择的各种信噪比 (SNR) 混合它们. 对于LSTM ,不同性别的混合音频结果如下: 对于BLSTM ,不同性别的混合音频结果如下: 从上面的结果可以看出,混合性别音频的分离效果优于同性音频,BLSTM 的性能优于 LSTM。 2. 评价标准 SDR:信号失真比 SAR:信号与伪像的比率 SIR:信号干扰比 STOI:短期客观可懂度测量 ESTOI:扩展的短期目标可懂度测量 PESQ:语音质量的感知评估 3. 依赖库 matlab(我的测试版:R2016b 64位) tensorflow(我的测试版本:1.4.0) anac
2022-12-21 11:33:49 5.37MB 系统开源
1
SZ-taxi。该数据集由深圳2015年1月1日至1月31日的出租车轨迹数据组成,本文选取罗湖区156条主要道路作为研究区域。实验数据主要包括两部分。一个是156*156的邻接矩阵,它描述了道路之间的空间关系。每一行表示一条道路,矩阵中的值表示道路之间的连接性。另一个是特征矩阵,它描述了每条道路上的速度随时间的变化。每一行代表一条路,每一列是不同时段道路上的交通速度。每15分钟计算一次每条路上的车速。GNN-LSTM GCN GNN LSTM RNN
2022-12-21 11:27:21 2.03MB 深度学习 LSTM 图神经网络 智能交通
1
针对视频车辆检测问题,提出了一种基于LSTM的视频车辆检测算法模型。该算法接受视频序列作为输入,先利用卷积网络提取视频帧的空间特征,然后利用LSTM模块得到时间维度的特征,最后利用全卷积网络预测最终的检测结果。将所提算法与其他典型的算法进行比较,实验结果表明所提算法具有更好的检测准确率,同时检测速度也更快。
2022-12-20 20:30:35 215KB 视频车辆检测
1
基于lstm的poc漏洞扫描检测,内含数据集以及源码可以作为预研demo
2022-12-19 17:00:36 53KB scannner lstm 漏洞扫描
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
摘要:由于负载的改变或环境的改变,机械设备通常会以多模态的方式运行。因此抽取的观测数据随着模态的变化而变化。模式划分是故障分类之前的一个重要的步骤。本文提出了一
2022-12-14 16:34:24 1.33MB 人工智能 lstm 深度学习
1
毕设新项目 基于SVM和LSTM实现的购物平台商品评论情感对比分析毕设源码+数据集+模型+项目说明.7z 【项目介绍】 使用Selenium模拟真实登录行为,并爬取数据 数据清理 将词汇向量化 使用jieba精确模式进行分词,构造词典 创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引 分类模型对比。 【备注】主要针对正在做毕设的同学和需要项目实战的机器学习、深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-13 13:26:04 49.86MB 机器学习 LSTM SVM
表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片 表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片 表情包情感分类数据集,用于情感分析,,各类表情图像共6992张图片
2022-12-09 11:27:55 695.5MB 深度学习 图片 表情 数据集