这一次,我们将Grove与LoRa相结合,为您提供超远距离无线模块。这是433MHz版本LoRa收发器设计及应用,可用于433MHz通信。 您还可以在Grove - LoRa Radio 868MHz上找到868MHz的版本。 Grove-LoRa Radio 433MHz的主要功能模块是RFM98,它是一款采用LoRa远程调制解调器的收发器,可提供超长距离扩频通信且高抗干扰性,同时消耗微量电流。 Grove-LoRa Radio 433MHz的核心处理器是ATmega168,这是一种广泛使用的芯片,具有很高的性能和低功耗,特别适用于这个Grove模块。 我们已经集成了一个简单的线天线来接收信号,如果信号太弱,不用担心,天线旁边的MHF连接器可以用来增加一个带有MHF接口的天线,双天线可以获得更多的信号。 硬件概览: ATMega168 MCU (数据手册) MHF 连接器 板载线天线 RFM95 模块 (数据手册) Grove 接口 特性: 使用基于 SX1276 LoRa:registered: 的 RFM95 模块 工作电压:5V/3.3V ~28mA(Avg) @+20dBm 持续传输模式 ~8.4mA(Avg)@待机模式 ~20mA(Avg) @接收模式, BW-500kHz 工作温度:-20 – 70℃ 接口: Grove - UART(RX,TX,VCC,GND) 简易线天线或者带 MHF 连接头的高增益天线 工作频率:868MHz/433MHz 电源输出能力 +20dBm 100 mW 尺寸:20*40mm 速率:0.3kps~50kps 简单易用的 Arduino 库 备用可扩展 MHF 天线接头 下图显示了带宽信号带宽扩展因子和灵敏度之间的关系 附件资料截图:
2022-10-20 13:18:10 16.73MB rfm98 433mhz通信 电路方案
1
实现基于软件无线电的OFDM系统仿真,利用USRP平台实现收发信号
1
利用 串口+DMA+IDLE中断+无锁队列,提高串口接收效率 接收会产生的中断有三种: - 串口空闲中断:正常接收(小于 dma 设置的 buffer_size 时) - DMA传输完成中断:刚好为 dma 设置的 buffer_size 时,不过一般也不会出现, 如果出现了的话也应该增加缓冲区大小 - DMA的半传输中断:(这里没有用到,如果内存有限制可以自行开启) 注意: - 环形队列的缓冲区要设置为 2 的幂次方的大小 - 串口中断一般可以设置为最低优先级,因为是 DMA后台自动接收的, 所以中断优先级最低并不会丢失数据 - 用户缓存 buff_read 可以随意设置,没有限制,但为了节省内存, 一般小于等于 DMA 的接收缓存 usart_buff_rx
2022-10-19 14:03:59 7KB stm32 串口通信 队列
1
1、文章《基于MATLAB和simulink的CAN报文收发模块仿真实验》的模型文件; 2、编译通过,模型可以正常运行; 3、双击scop示波器查看输出信号; 4、其他参数不需要调整; 5、软件环境为matlabR2020b或以上,老版本有可能出现功能报错的情况。
2022-10-19 11:32:07 29KB 源码软件 simulink
1
1. 理解 QAM 调制的一般原理 2. 掌握数字调制的一般流程 3. 掌握全数字接收机的设计方法 4. 理解同步的概念
2022-10-15 19:05:03 13KB MATLAB QAM
1
unity,pun2多人位置同步,多人装扮同步,多人数据发送及接收同步
2022-10-10 17:05:20 149.49MB unity3d 多人在线 多人联机
1
采用STM32F429IGT6单片机,KeilMDK5.32版本 使用SysTick系统滴答定时器进行延时 LED_R、LED_G、LED_B分别位PH10,PH11,PH12 USART1,波特率115200,无校验位,1位停止位 PA9->TX,PA10->RX,开启TC和IDLE中断 仿printf发送,DMA式收发数据 串口空闲中断触发后,在中断服务函数中重新填写DMA的剩余传输数据数量寄存器的值,保证下一次接收数据是从串口接收缓冲区的第一个字节接收 配备了CRC校验,使用CRC-32(以太网)多项式:0x4C11DB7 KEIL5下载配置有FLASH与SRAM
2022-10-07 16:28:10 598KB stm32 c语言
1
该例程采用RGMII接口,实现的ARP请求接收,ARP应答响应,以及UDP协议收发,创建一个数据环回的案例,收到上位机数据将原样传到上位机。该例程与FPGA基础专栏中《E1--千兆以太网接口测试应用2022-09-07》对应,可与QT小项目中的《C9—Qt实现网络调试助手》实现上下位机联调。
2022-09-30 09:27:38 118.8MB FPGA verilog 千兆网口
1
针对目前短程开放段无线通信系统双工通信终端不对称现象,设计智能化无线射频收发两用硬件终端系统。在对系统框架进行研究后,使用单片微控制器MSP430F1121和射频模块TRF6900作为主芯片的方案。通过计算主要功能模块的外围电路参数,完成了系统电路设计。该系统实现了收发端完全对等使用,而且电路结构简单,具有低成本、低功耗等优点,可广泛应用在无线网络终端设备中。
2022-09-29 09:46:22 285KB IPTV|VoIP
1