内容包括朴素贝叶斯算法python实现代码,实现对iris分类,包含iris的txt格式的数据集。
1
faceRecgSys:使用Matlab的人脸识别系统; 算法:LBP,PCA,KNN,SVM和朴素贝叶斯
1
算法研究 凑空写了个NBC 朴素贝叶斯分类器 希望对大家有用
2021-11-16 15:55:57 24.26MB NBC 算法 朴素贝叶斯
1
文字分类 训练一个分类器(KNN,SVM),对文本数据进行分类,类别可包括体育,财经,房地产,家居,教育等十个类别。 文本分类的一般流程可以分为五步:(1)对文本进行预处理,包括分词操作和替换词去除等;(2)特征提取与特征选择,选择文本特征提取方法,替代特征进行选择(3)文本表示,选择合适的方法表示选择的特征,作为分类的依据;(4)分类器构建,选择合适的分类算法训练得到对应的文本分类器;结果评估,选择合适的评估指标,对分类结果进行评价 #实验内容1.构建数据集2.数据预处理(分词,去除重置词)3.生成数据集的特征矩阵4.使用朴素贝叶斯模型进行处理5.使用SVM模型进行处理 本次实验使用到的数据集为实验预先提供的新闻训练集,新闻测试集,以及替换词。训练集和测试集中包括共10个种类的新闻,但所有的新闻都在一个文档里,也查看训练集和数据集内容,发现共有十个新闻分类,分别是“财经”,“资产”, “
2021-11-16 14:26:47 2KB
1
朴素贝叶斯算法 Java朴素贝叶斯算法的实现 塔亚内·塞奎拉(Tayane Cerqueira)和卢卡斯·阿尔梅达(Lucas Almeida) 资料库:iris.arff(做weka) 属性:萼片长度,萼片宽度,花瓣长度和花瓣宽度 类别:Iris Setosa,Iris Versicolour和Iris Virginica 实例数:150(每个类50个)
2021-11-16 10:50:07 11.87MB Java
1
Logistic回归和朴素贝叶斯 在UCI机器学习数据集上实现了Logistic回归和朴素贝叶斯。 对于这两个模型,使用混淆矩阵评估了这些分类器。
2021-11-16 09:05:22 864KB Java
1
使用python进行朴素贝叶斯方法预测,对具有20个主题的10万多篇文章进行训练,要求给出一篇文章,预测输出这篇文章属于什么类型
1
机器学习 这些是我用一些数据集实现的一些流行的机器学习算法。 其中包括线性回归(多变量)的实现,逻辑和线性回归的梯度下降,决策树,随机森林,朴素贝叶斯。 它们都是用python 3.5编写的。
2021-11-13 19:48:43 4.12MB JupyterNotebook
1
本节主要介绍数据挖掘中常见的分类方法决策树和朴素贝叶斯算法。 决策树算法 决策树(Decision Tree,DT)分类法是一个简单且广泛使用的分类技术。 决策树是一个树状预测模型,它是由结点和有向边组成的层次结构。树中包含3种结点:根结点、内部结点和叶子结点。决策树只有一个根结点,是全体训练数据的集合。 树中的一个内部结点表示一个特征属性上的测试,对应的分支表示这个特征属性在某个值域上的输出。一个叶子结点存放一个类别,也就是说,带有分类标签的数据集合即为实例所属的分类。 1. 决策树案例 使用决策树进行决策的过程就是,从根结点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直
2021-11-12 16:53:15 131KB mllib 信息增益 决策树
1
伯克利人工智能先导课cs188作业,朴素贝叶斯模型和KNN算法实现手写数字识别,准确率都达到很高水平,有说明文件,有训练结果绘图,适合新手入门
1