cnn源码matlab SVHN-deep-cnn-digit-detector 该项目在自然场景中实现了 deep-cnn-detector(和识别器)。 我使用 keras 框架和 opencv 库来构建检测器。 该检测器使用 CNN 分类器为 MSER 算法提出的区域确定数字与否。 先决条件 Python 2.7 keras 1.2.2 opencv 2.4.11 张量流-GPU == 1.0.1 等等。 运行这个项目所需的所有包的列表可以在 . Python环境 我建议您创建和使用独立于您的项目的 anaconda 环境。 您可以按照以下简单步骤为该项目创建 anaconda env。 使用以下命令行创建 anaconda env: $ conda env create -f digit_detector.yml 激活环境$ source activate digit_detector 在这个环境中运行项目 用法 数字检测器的构建过程如下: 0. 下载数据集 下载 train.tar.gz 并解压文件。 1.加载训练样本(1_sample_loader.py) Svhn 以 m
2023-01-13 16:54:36 55.27MB 系统开源
1
心音-深度学习 该项目旨在在低功耗ARM处理器(例如在树莓派上找到的处理器)上运行。 目的是将该软件打包到一个小型硬件设备中,发展中国家的护理工作者可以使用该设备来检测心脏病的早期发作。
2023-01-10 21:55:38 182.83MB tensorflow raspberrypi signal-processing heartbeat
1
anaconda和WIN10下tensorflow-gpu的安装,网上很多其他的安装指导都容易引起各种兼容问题。已亲测可用2018-12月30日。
2023-01-08 16:40:34 917B tensorflow anaconda python WIN10
1
交通标志识别 在这个项目中,我使用卷积神经网络对交通标志进行分类。 具体来说,我训练了一个模型,用于根据“德国交通标志对交通标志进行分类。 我使用TensorFlow进行模型开发,并在GPU上对其进行了训练。 分几个步骤: 加载数据集 探索,总结和可视化数据集 设计,训练和测试模型架构 使用模型对新图像进行预测 分析新图像的softmax概率 完整的项目代码可以在找到 数据集摘要与探索 1.数据集的基本摘要。 此步骤的代码包含在的3d code cell中 我使用了pandas库来计算交通标志数据集的摘要统计信息: 训练示例数= 34799 测试例数= 12630 图像数据形状=(32,32,3) 班级数量= 43 2.数据集的探索性可视化。 该步骤的代码包含在的5th code cell中。 这是数据集的探索性可视化。 它是显示数据分布方式的条形图。 我们看到分布不均。
2023-01-06 20:41:07 145KB JupyterNotebook
1
该压缩包含有TensorFlow1.1.0版本的Mac操作系统.whl文件
2023-01-03 11:26:24 28.54MB mac tensorflow python
1
该压缩包含有TensorFlow1.1.0版本的Mac操作系统.whl文件
2023-01-03 11:26:23 28.54MB mac tensorflow python
1
python keras tensorflow 实现,长短时记忆网络,AI项目,有数据集和代码,jupyter notebook 代码编写,有出图,包括模型保存
2023-01-02 16:27:27 152KB 人工智能 tensorflow keras 共享单车
1
该压缩包中含有Mac操作系统的TensorFlow0.12.0版本的.whl文件
2023-01-02 16:27:26 36.04MB mac TensorFlow Python anaconda
1
该压缩包含有TensorFlow0.12.0版本的Mac操作系统.whl文件
2023-01-02 16:27:26 35.72MB mac Python TensorFlow
1
该压缩包含有TensorFlow0.12.0版本的Windows操作系统下载,并且含有下载安装教程
2023-01-02 16:27:25 12.74MB tensorflow python deep learning
1