只是一个简单的黑白棋小游戏,用简单的c语言编写
2019-12-21 19:59:58 20KB c语言 黑白棋
1
同学大一时候的作业,感觉很不错就是算起来有点慢
2019-12-21 19:59:39 36KB 黑白棋 python
1
VC++编写的黑白棋,可实现人人对决,人机对决,自动走棋
2019-12-21 19:35:33 2.86MB VC++ 黑白棋
1
本程序使用的是面向对象的QT库的C++语言,开发可以同时运行于Linux和Windows环境下的游戏程序。有双人对弈,人机对弈,无限悔棋等功能,其中人机对弈包含难度选择和先后手选择。
2019-12-21 19:26:35 712KB 黑白棋
1
基于Qt5.5.1的GUI小项目:黑白棋游戏(主要实现了吃子的算法逻辑以及简单的机器下子的算法逻辑)
2019-12-21 19:25:12 11.54MB 黑白棋
1
本课题设计并实现了一个可以单人或双人对战的黑白棋游戏系统,该系统采用C++语言在Microsoft Visual C++ 6.0下编写代码,采用VC中比较流行的MFC模板进行编程。系统不仅使人进行双人对战也可以进行单人与计算机的对战,且人工智能比较高超。 系统主要功能包括:开始游戏,保存游戏,计算机演示,排行榜以及像悔棋与退出之类的一些功能,它们通过VC中强大的文档编译功能进行自动生成,然后通过手工增加代码和一些图片,声音等文件来进行实现。
2019-12-21 19:25:03 2.92MB c++ 黑白棋 代码 课程设计
1
人机对战版黑白棋,包含可执行文件及代码,方便使用
2019-12-21 19:24:54 1.63MB 黑白棋 人机对战
1
这个是使用Qt C++做出来的初级版黑白棋 算法有点简单 希望各位指正
2019-12-21 19:24:45 12.56MB Qt C++ 黑白棋 代码
1
•Alpha-Beta剪枝(Alpha-Beta pruning) 对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。各种各样的这种算法用于所有的强力Othello程序。(同样用于其他棋类游戏,如国际象棋和跳棋)。为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。 •估值 这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。我将要叙述三种不同的估值函数范例。我相信,大多数的Othello程序都可以归结于此。 棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。例如,角在开局阶段和中局开始阶段比终局阶段更重要。采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。 基于行动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。观察表明,许多人类玩者努力获得最大的行动力(可下棋的数目)和潜在行动力(临近对手棋子的空格,见技巧篇)。如果代码有效率的话,可以很快发现,它们提高棋力很多。 基于模版的估值 :正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大行动力和潜在行动力是全局特性,但是他们可以被切割成局部配置,再加在一起。棋子最少化也是如此。这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。 估值合并:一般程序的估值基于许多的参数,如行动力、潜在行动力、余裕手、边角判断、稳定子。但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
2019-12-21 18:57:59 884KB 黑白棋 算法 论文
1
用汇编语言编写的黑白棋游戏!!自己做的课程设计
2019-12-21 18:52:18 29KB 黑白棋 汇编
1