1. 自定义一个示意性的复数类型complex,其中含有若干个成员函数。请完成类定义,并编制主函数,说明complex类对象,对定义的各成员函数进行调用。 class complex{ double real; //复数实部 double imag; //复数虚部 public: complex(); //无参构造函数 complex(double r, double i); //2参构造函数 complex addCom(complex c2); //调用者对象与对象c2相加,返回complex类对象 void outCom (); //输出调用者对象的有关数据(各分量) }; 进一步,在类中添加对复数进行其他基本运算(如,复数减、乘、除、取模等)的相应成员函数,并通过主函数处的调用来验证各函数的使用正确性。
1
采用C++开发的复矩阵数学库,含复数类CMyComplex、矩阵类CMatrix、修正贝塞尔函数类等,可进行各种复数和复矩阵运算,具体包括:实矩阵求逆的全选主元高斯-约当法、复矩阵求逆的全选主元高斯-约当法、对称正定矩阵的求逆、托伯利兹矩阵求逆的埃兰特方法、求行列式值的全选主元高斯消去法 求矩阵秩的全选主元高斯消去法、对称正定矩阵的乔里斯基分解与行列式的求值、矩阵的三角分解 、一般实矩阵的QR分解、一般实矩阵的奇异值分解 、求广义逆的奇异值分解法、约化对称矩阵为对称三对角阵的豪斯荷尔德变换法、实对称三对角阵的全部特征值与特征向量的计算、约化一般实矩阵为赫申伯格矩阵的初等相似变换法、求赫申伯格矩阵全部特征值的QR方法、求实对称矩阵特征值与特征向量的雅可比法、求实对称矩阵特征值与特征向量的雅可比过关法等,内容十分丰富完善。
2019-12-21 20:07:52 6.39MB C++复数矩阵 数学库 Complex Matrix
1
network science Albert-László Barabási new book
2019-12-21 20:01:29 16.64MB complex network
1
Preface page xi Acknowledgments xiii Abbreviations xv Nomenclature xvii 1 Introduction 1 1.1 Introduction to the Book 1 1.2 Motivation for the Book 2 1.3 Brief Literature Summary 3 1.4 Brief Outline 5 2 Background Material 6 2.1 Introduction 6 2.2 Notation and Classification of Complex Variables and Functions 6 2.2.1 Complex-Valued Variables 7 2.2.2 Complex-Valued Functions 7 2.3 Analytic versus Non-Analytic Functions 8 2.4 Matrix-Related Definitions 12 2.5 Useful Manipulation Formulas 20 2.5.1 Moore-Penrose Inverse 23 2.5.2 Trace Operator 24 2.5.3 Kronecker and Hadamard Products 25 2.5.4 Complex Quadratic Forms 29 2.5.5 Results for Finding Generalized Matrix Derivatives 31 2.6 Exercises 38 3 Theory of Complex-Valued Matrix Derivatives 43 3.1 Introduction 43 3.2 Complex Differentials 44 3.2.1 Procedure for Finding Complex Differentials 46 3.2.2 Basic Complex Differential Properties 46 3.2.3 Results Used to Identify First- and Second-Order Derivatives 53 viii Contents 3.3 Derivative with Respect to Complex Matrices 55 3.3.1 Procedure for Finding Complex-Valued Matrix Derivatives 59 3.4 Fundamental Results on Complex-Valued Matrix Derivatives 60 3.4.1 Chain Rule 60 3.4.2 Scalar Real-Valued Functions 61 3.4.3 One Independent Input Matrix Variable 64 3.5 Exercises 65 4 Development of Complex-Valued Derivative Formulas 70 4.1 Introduction 70 4.2 Complex-Valued Derivatives of Scalar Functions 70 4.2.1 Complex-Valued Derivatives of f (z, z∗) 70 4.2.2 Complex-Valued Derivatives of f (z, z∗) 74 4.2.3 Complex-Valued Derivatives of f (Z, Z∗) 76 4.3 Complex-Valued Derivatives of Vector Functions 82 4.3.1 Complex-Valued Derivatives of f (z, z∗) 82 4.3.2 Complex-Valued Derivatives of f (z, z∗) 82 4.3.3 Complex-Valued Derivatives of f (Z, Z∗) 82 4.4 Complex-Valued Derivatives of Matrix Functions 84 4.4.1 Complex-Valued Derivatives of F(z, z∗) 84 4.4.2 Complex-Valued Derivatives of F(z, z∗) 85 4.4.3 Complex-Valued Derivatives of F(Z, Z∗) 86 4.5 Exercises 91 5 Complex Hessian Matric
2019-12-21 19:57:14 1.81MB 复数矩阵 矩阵求导 应用案例 deriv
1
by Maarten van Steen (Author) ============================= This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory.
2019-12-21 19:41:12 5.73MB 图论 随机图 复杂网络
1
复分析基础及工程应用 答案 fundamentals of complex analysis with applications to engineering and science solution manual
1
定义复数的类Complex并测试其功能:   1. 复数由实部、虚部两个部分组成,在类的定义中应包含保存这两部分信息的内容。   2. 在类中定义构造函数,使用户能够在构造对象的同时为对象赋初值。   3. 在类中定义复数的加法、减法、乘法三个成员方法来完成复数间的加、减、乘的功能。   4. 通过重载toString方法,使得Complex类的对象能够显示其自身信息。   5. 通过显式定义一个成员函数完成对象的赋值操作,使用户能够对Complex类的对象进行赋值。   6. 编写包含main方法的测试类,使用户能够通过这段主程序输入复数并进行复数的计算。
2019-12-21 19:22:35 5KB java 复数的类Complex
1
ComplexNetworksPackage matlab复杂网络分析 很实用的工具包,找了好久才找到的
2019-12-21 18:55:32 25.35MB Complex Network Package matlab
1