深度学习上课状态检测数据集,适用于智慧课堂等项目,包含图片以及xml标签
2024-04-12 19:45:57 3.61MB 数据集 深度学习 目标检测 人工智能
1
pytorch-1.4.0-py3.8 cuda101 cudnn7.0
2024-04-12 03:13:21 472.4MB pytorch 人工智能 python 深度学习
1
基于YoloV5l的面部表情识别模型是一项引人注目的技术发展,它将目标检测与深度学习相结合,旨在实现对人脸图像中不同表情的准确识别。YoloV5l模型以其强大的检测性能和高效的计算能力而著称,为面部表情识别任务提供了出色的基础。 该模型的设计考虑到了人脸表情的多样性和复杂性。人脸表情在微表情、眼部、嘴巴等区域都具有独特的特征,因此模型需要具备出色的特征提取和分类能力。YoloV5l模型通过多层次的卷积神经网络和注意力机制,能够在不同尺度上捕捉人脸图像的细节,从而实现高质量的表情分类。 为了进一步提升面部表情识别模型的性能,我们可以考虑以下扩展和优化: 数据增强:通过旋转、缩放、平移、翻转等数据增强技术,增加训练集的多样性,提高模型的泛化能力,尤其在捕捉微表情时更为重要。 迁移学习:利用预训练的权重,特别是在人脸检测和关键点定位方面的预训练模型,可以加速模型的训练和提升性能。 多任务学习:将人脸表情识别与人脸情感分析、性别识别等任务结合,共享底层特征,提高模型的通用性。 注意力机制:引入注意力机制,使模型能够更关注人脸的关键区域,如眼睛、嘴巴,从而提高表情识别的准确性。 模
2024-04-11 23:50:49 168.83MB 目标检测 深度学习 迁移学习
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
深度学习网络模型 MobileNet系列v1 ~ v3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比 DW与PW计算量 普通卷积计算量 计算量对比 2、MobileNet V1 MobileNet V1网络结构 MobileNet V1网络结构代码 3、MobileNet V2 倒残差结构模块 倒残差模块代码 MobileNet V2详细网络结构 MobileNet V2网络结构代码 4、MobileNet V3 创新点 MobileNet V3详细网络结构 注意力机制SE模块代码 InvertedResidual模块代码 整体代码
2024-04-11 12:04:25 504.75MB 网络 网络 pytorch pytorch
1
1.项目利用TF-IDF(Term Frequency-Inverse Document Frequency 词频-逆文档频率)检索模型和CNN(卷积神经网络)精排模型构建了一个聊天机器人,旨在实现一个能够进行日常对话和情感陪伴的聊天机器人。 2.项目运行环境:Python环境、TensorFlow 环境和Python包jieba、tqdm、nltk、pyqt5等。 3.项目包括4个模块:数据预处理、模型创建与编译、模型训练及保存、模型生成。数据来源于GitHub开源语料集,下 载地址为: https://github.com/codemayq。在TF-IDF模型中定义的架构为:计算TF-IDF向量,通过倒排表的方式找到与当前输入类似的问题描述,针对候选问题进行余弦相似度计算。模型生成一是通过中控模块调用召回和精排模型;二是通过训练好的召回和精排模型进行语义分类,并且获取输出。 4.准确率评估:测试准确率在90%左右。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131540115
2024-04-11 11:51:58 49.67MB tensorflow 深度学习 人工智能 python
1
swin transformer
2024-04-11 11:13:55 13.71MB 深度学习 人工智能 transformer
1
课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 转头(probe)+低头(peep)+传递物品(passing) 课堂专注度+表情识别 侧面的传递物品识别 **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl ## 使用 ### 运行setup.py安装必要内容 ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` [windows上安装scipy1.1.0可能会遇到的问题](https://github.com/MVIG-SJTU/AlphaPose/issues/722) ### 运行
2024-04-11 09:11:37 105.52MB 深度学习 python 毕业设计 人脸识别
1
基于深度学习与词嵌入的情感分析系统设计与实现【毕业设计源码+答辩PPT+论文】 1、研究目的 针对文本进行句子和段落级的情感倾向性分析,利用算法来判断句子的情感色彩。研究的目标在于提高情感分析算法的准确性,不断学习,不断提高和优化算法。在实际数据集上的进行模型训练与调优,并对模型进行简单的封装和部署。 2、研究方法 主要使用基于深度学习的方法,数据集采用论文常用的 IMDB 数据集,旨在提高最终设计模型的准确性。本文尝试吸收其他深度学习模型优点,自己设计了 7 个深度学习模型。本文主要创新点在于,利用模型集成融合里的堆叠法的思想,实现了 3 个树形的传统机器学习算法与 7个深度学习模型的集成。 3、研究结论 在第一个IMDB数据集上经过AUC评分,计算重合的面积, 可以达到95.97%分,排名能达到前15%。 在第二个twitter数据集上经过F1 Score的评分方法,得到了 0.7131280389的分数,排名196/614,30%左右。
2024-04-10 23:58:02 3.79MB 毕业设计 深度学习 情感分析 论文
1
yolov5头部检测,教室头部检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 扣扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加语音报警,可统计技术,可定制yolov7,yolov8版本 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-04-10 15:07:59 38.99MB 网络 网络 目标检测 深度学习
1