利用1999―2009年安徽省淮河以南地区60个县市站夏季逐日降水资料和安庆市探空站逐日资料,研究了中低层不同风向配置下局地降水与大尺度降水场之间的关系,以3种不同预报对象及相应的预报因子分别采用神经网络和线性回归方法设计6种预报模型对观测资料进行逼近和优化,从而实现空间降尺度.分析对比6种预报模型46站逐日降水量的拟合和预报效果,结果表明:采取相同的预报对象及预报因子的BP神经网络模型在拟合和预报效果上均好于线性回归模型,可见夏季降水场之间以非线性相关为主;神经网络模型预报结果同常用的Cressman插
2022-11-14 23:17:30
1.14MB
自然科学
论文
1