二次动态矩阵控制于 1970 年代由壳牌石油公司开发(Cutler 和 Ramaker,1979 年),是化学工业中常用的模型预测控制公式。 提交包含一个控制器文件来执行 QDMC 算法。 一个单独的文件显示了如何在一个简单示例的闭环仿真中使用控制器。 该公式遵循Enso Ikonen在“模型预测控制和状态估计”的讲义中使用的术语。
2021-11-01 11:24:36 11KB matlab
1
使用VAR模型和复杂网络测度对多变量时间序列进行因果分析
2021-10-18 15:03:02 2.75MB 研究论文
1
MV-LSTM 多变量LSTM当前神经网络用于多变量时间序列的预测和解释 郭,田,陶林和Nino Antulov-Fantulin。 “在多变量数据上探索可解释的LSTM神经网络。” 国际机器学习会议(ICML)。 2019。 郭涛,林涛,卢Y.自回归外生模型的一种可解释的LSTM神经网络[J]。计算机应用,2006,26(5):1175-1178 关于ICLR的研讨会专题,2018年。 可以在这里找到PyTorch的实现(贷记给KurochkinAlexey): :
2021-10-17 09:42:58 53KB Python
1
多变量 Hammerstein - Wiener 模型的参数辨识
2021-10-11 16:39:12 256KB 研究论文
1
Multivariable feedback control : analysis and design 一书中的所有MATlab程序。是学习鲁棒控制的好材料。
2021-10-10 22:34:33 780KB MIMO feedback
1
Hotelling 对一个样本、两个独立样本 [同方差或异方差(待检验)] 和两个相关样本进行多变量检验。
2021-10-10 16:30:01 14KB matlab
1
3D-MICE:横截面和纵向插补的整合 要求 代码是用R编写的。 开始使用 要训​​练,跑步(最好以R减价跑步) source('tempMICEGPEvalTr.R') 这是一个包装器代码,调用各种子例程来生成训练数据,掩盖缺失值并执行3D-MICE插补,每个步骤都包装在其自己的R源文件中,并且应该是不言自明的。 同样地,进行训练,跑步(最好以R降级的方式跑步) source('tempMICEGPEvalTe.R') 引文 @article{luo20173d, title={3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data}, author={Luo, Yuan and Szolovits, Pe
1
这个matlab文件是通过计算均值和协方差矩阵的多变量高斯概率密度函数
2021-10-09 14:35:39 958B Gauss probability density function
1
MvCAT 是在 Matlab 中作为用户友好的工具箱(软件)开发的,可帮助科学家和研究人员进行严格而全面的多元相关性分析。 它使用具有1至3个参数的26个系动词科来描述两个随机变量的依存结构。 MvCAT使用局部优化以及贝叶斯框架内的马尔可夫链蒙特卡罗模拟,通过将copula系列与可用数据进行对比来推断copula系列的参数值。 如果使用 MCMC 模拟进行贝叶斯分析,则可以从 copula 参数的后验分布中获得每个 copula 族的不确定性估计。 贝叶斯框架内的 MCMC 不仅提供了对全局最优值的稳健估计,而且还近似了 copula 族的后验分布,可用于构建 copula 的预测不确定性范围。 局部优化方法容易陷入局部最优(有关更多信息,请参见 Sadegh 等人,2017)。 用户可以选择可用的 26 个 copula 的任何子集,MvCAT 将执行分析并根据它们的性能对选定的 c
2021-10-07 20:17:01 2.68MB matlab
1
多变量非线性控制的逆系统方法
2021-10-06 14:38:55 2.75MB 多变量 非线性控制 逆系统方法
1