人工心脏起搏器是一种很精巧的、可靠程度很高的电脉冲刺激器,是应用一定型式的起搏脉冲发生器,与特制的导线(即:起搏导管电极)连接,和起搏电极发送电脉冲刺激心脏,使激动不能或传导不好的心脏应激而起搏的医疗电子仪器 在医疗技术不断进步的今天,植入式人工心脏起搏器已经成为治疗心律失常的重要手段。它能够有效模拟心脏自然的跳动节奏,为那些因心脏电生理异常而无法正常跳动的心脏提供帮助。这一设备的出现,不仅挽救了许多患者的生命,也极大地提高了他们的生活质量。 心脏起搏器主要由起搏导管电极和起搏脉冲发生器两个关键部分组成。起搏导管电极的作用是连接起搏器与心脏,一方面它可以检测心脏的自然搏动并将其反馈给起搏器,另一方面它能够将起搏器产生的电脉冲传递至心肌。随着技术的发展,现代起搏器使用的导管电极已经从最初的单极设计,演进为更为先进的双极甚至多极设计。这种进步有助于提升起搏效率,并减少不必要的副作用。电极导线的材料选择也十分考究,一般采用生物相容性极好的合金材料,如爱尔近合金或镍-铬-钴-钼合金,并以高纯硅橡胶或医用聚氨酯进行外部绝缘处理。电极头的表面通常使用低温热解碳或铂,以进一步增强其生物相容性和耐用性。 起搏脉冲发生器则是起搏器的核心,它负责生成并控制电脉冲。它通常由起搏电路、电池以及金属外壳构成。电池采用的是锂-碘电池,因其具备体积小、能量密度高和使用寿命长的优点。而起搏器的外壳则多采用钛金属制成,以确保其密封性和防止锈蚀。在起搏电路的设计上,一般采用集成电路技术,如CMOS ASIC芯片,结合电阻、电容等元件形成混合型厚膜集成电路,以实现高效的脉冲生成和控制。 植入式人工心脏起搏器在临床上的应用范围十分广泛,它能够为多种心脏疾病提供有效的治疗方案。适应症包括高度或完全性房室传导阻滞、三束支或双束支阻滞、二度II型房室传导阻滞、病态窦房结综合征、以及对药物治疗无效的快速心律失常等。对于这些疾病,植入起搏器能有效预防严重的心律失常,缓解诸如心脏供血不足、心力衰竭、心绞痛和晕厥等症状,对提高患者的生活质量有重要作用。 自1932年Hyman发明第一台人工心脏起搏器以来,这项技术已经取得了长足的进步。从最初的体外起搏器,到1958年和1960年的首次尝试植入式起搏器,再到如今具有长寿命、高可靠性的多功能起搏器,技术的发展使得起搏器更加接近于模拟心脏的自然搏动,减少因不协调导致的竞争心律,极大地提高了治疗效果。目前,起搏器的类型已包括同步型、房室同步触发型、心室按需型,以及双腔和全能型起搏器等多种类型,它们能够根据患者的特定需求进行个性化治疗。 展望未来,随着科技的进一步发展,植入式人工心脏起搏器有望变得更加智能化和个性化。我们可以预见,在不远的将来,起搏器将能够实时监测患者的心脏状况,并根据患者的具体活动水平和心脏反应来自动调整起搏频率。这种精准化的治疗不仅能够为患者带来更佳的治疗效果,还能极大地减轻患者的经济和心理负担。未来的起搏器可能还会集成更多先进的生物传感技术,实现更加全面的健康管理。随着医疗科技的不断突破,心脏起搏器将在预防和治疗心脏疾病方面发挥更加关键的作用。
2025-11-19 10:23:21 146KB 心脏起搏器
1
人工心脏起搏器是一种很精巧的、可靠程度很高的电脉冲刺激器,是应用一定型式的起搏脉冲发生器,与特制的导线(即:起搏导管电极)连接,和起搏电极发送电脉冲刺激心脏,使激动不能或传导不好的心脏应激而起搏的医疗电子仪器。 在当今医学领域中,植入式人工心脏起搏器扮演着一个至关重要的角色,尤其是在心脏病治疗的领域内。它作为一种能够模拟心脏自然搏动的医疗电子设备,有效地帮助了许多心脏电生理功能出现异常的患者,维持了他们的生命。本文旨在深入探讨植入式人工心脏起搏器的原理、结构、适应症以及技术的发展历程,以便我们更全面地了解这一重要的医疗设备。 起搏器主要由两部分组成:起搏脉冲发生器和起搏导管电极。起搏脉冲发生器含有精密设计的起搏电路、为设备提供能源的电池以及保护起搏器不受人体腐蚀的金属外壳。起搏器电路能够按照预设的模式产生电脉冲,从而刺激心脏搏动。目前常用的电池类型为锂-碘电池,它以长寿命和稳定的能量释放特性而被广泛采用。而起搏器的外壳则多采用钛材料,因为钛具有极佳的生物相容性,可以确保起搏器长期在体内安全使用。起搏导管电极的作用是将起搏器发出的电脉冲准确无误地传输至心脏,并能感知心脏的自然搏动,进而调整起搏脉冲的发放时机,确保心脏搏动的正常进行。 适应症的广泛性是人工心脏起搏器的另一大特色。无论是在心室传导系统还是心房传导系统出现传导阻滞,或是病态窦房结综合征引起的心动过缓,乃至对抗心律失常药物无效的病例,起搏器都可发挥其重要作用。特别是一些严重的传导系统疾病,如完全性房室传导阻滞或病态窦房结综合征,若不及时干预,均可能导致心脏无法正常供血,进而威胁生命。起搏器的植入,能够在很大程度上预防此类情况的发生。 人工心脏起搏器的发展历史可以追溯到20世纪30年代,不过起搏器的临床应用则是从1950年代才开始起步。在此之后,起搏器技术经历了迅速的发展。最初,起搏器是外置的,随着时间的推移,技术进步使起搏器逐步发展为小型的植入式设备,而且其功能也从最初的非同步单一功能发展到现如今的同步起搏、远程监测、程控管理等高级功能,极大地提高了患者的生活质量。 植入式人工心脏起搏器通过模拟心脏自然节律发出电脉冲,维持心脏正常搏动,帮助心脏功能异常患者。随着技术的革新,起搏器已经从一个简单的电子设备,进化为一个集先进电子技术、生物兼容材料以及精准控制算法于一体的高科技医疗设备。未来,随着科技的不断进步,我们可以预见人工心脏起搏器将更加智能化,其个性化程度也会进一步提高,以满足不同患者的具体需求,从而为患者带来更好的医疗体验和更长的生存期。
2025-11-19 10:20:58 151KB 信号调理
1
分析了现有矿用移动变电站存在的缺点,设计了一种新型移动变电站。主要改进是在其高、低压侧配电装置的继电保护电路中引入了PLC(可编程序控制器)技术,提高了继电保护的安全性、可靠性和灵敏性,可有效进行线圈绝缘监测,并报警跳闸。使用实践表明,改进设计后的移动变电站既安全、可靠,又提高了生产效率。
2025-11-19 10:04:09 158KB 煤矿安全 移动变电站 可编程控制器
1
为了有效解决深井开采中出现的高温热害问题,为井下作业人员提供舒适的作业环境,在对济宁三号煤矿热害现状调研的基础上,采用分区段法计算得出工作面热源分布情况,提出采用局部降温系统对回采工作面降温的措施。局部降温系统由制冷主机、蒸发器、冷却系统三部分组成。对降温前后工作面风流热力参数进行了测试和对比分析,结果表明,降温后工作面平均干球温度降低了3.0℃,平均湿球温度降低了3.6℃,取得了较好的降温效果。
1
针对矿井涌水排热受矿井涌水量的限制,文章阐述了井下集中式回风排热矿井降温系统原理,介绍了井下回风排热冷却站的三种不同形式,并在张小楼深井降温系统进行应用,经测量表明:工作面降温效果显著,工作面和掘进头平均温度降低5℃,相对湿度降低5%~10%。回风经冷却站后,其温度基本达到38℃,相对湿度接近100%,基本达到设计目标。
2025-11-19 08:19:41 641KB 矿井降温系统 井下集中式 矿井涌水
1
基于大数据技术构建的地铁客流智能分析系统——高效管理与决策支持平台,项目21:基于大数据技术的地铁客流量分析系统 简介: 本项目旨在利用Hadoop和Spark大数据技术,对海量地铁客流量数据进行高效管理和深入分析。 通过构建数据仓库,实现用户登录注册功能,并提供地铁站点数量、站点人数、闸机总客流量等实时查询服务。 项目将进行站点乘客数量漏斗分析,以识别客流流失环节;同时,分析不同站点及线路的流量峰值和占比,为地铁运营提供决策支持。 最终,通过可视化技术展示统计分析结果,为管理者提供直观、易懂的数据展现形式,助力提升地铁运营效率和服务质量。 hadoop+spark+mysql+mybatis+springboot+vue+echarts+hmtl+css ,基于所给信息,提取的核心关键词为: 大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析; 流量峰值分析; 决策支持; 可视化技术。 关键词以分号分隔为:大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析;
2025-11-18 23:02:15 495KB
1
标题SpringBoot与Spark结合的西南天气数据分析与应用研究AI更换标题第1章引言阐述SpringBoot与Spark结合在西南天气数据分析中的研究背景、意义及国内外现状。1.1研究背景与意义介绍西南地区天气数据的特殊性及分析的重要性。1.2国内外研究现状概述国内外在天气数据分析与应用方面的研究进展。1.3研究方法与创新点介绍SpringBoot与Spark结合的方法,并说明研究的创新之处。第2章相关理论总结和评述SpringBoot、Spark及天气数据分析的相关理论。2.1SpringBoot框架理论介绍SpringBoot框架的特点、优势及在数据分析中的应用。2.2Spark计算框架理论阐述Spark的分布式计算原理、优势及在数据处理中的应用。2.3天气数据分析理论介绍天气数据分析的基本方法、常用模型及评价指标。第3章系统设计与实现详细描述基于SpringBoot与Spark的西南天气数据分析系统的设计方案和实现过程。3.1系统架构设计介绍系统的整体架构、模块划分及模块间交互方式。3.2数据采集与预处理阐述天气数据的采集方法、数据清洗及预处理流程。3.3数据分析模型构建介绍基于Spark的天气数据分析模型的构建过程及参数设置。3.4系统实现与部署系统的开发环境、实现细节及部署方式。第4章实验与分析对基于SpringBoot与Spark的西南天气数据分析系统进行实验验证和性能分析。4.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。4.2实验方法与步骤给出实验的具体方法和步骤,包括数据加载、模型训练和测试等。4.3实验结果与分析从准确性、效率等指标对实验结果进行详细分析,并对比其他方法。第5章应用与推广介绍系统在西南天气数据分析中的应用场景及推广价值。5.1应用场景分析分析系统在天气预报、灾害预警等方面的应用场景。5.2推广价值评估评估系统在其他地区或
2025-11-18 22:46:24 10.08MB springboot spark vue mysql
1
标题SpringBoot与Spark融合的西南天气数据分析研究AI更换标题第1章引言阐述SpringBoot结合Spark进行西南天气数据分析的研究背景、意义及现状,并介绍论文方法和创新点。1.1研究背景与意义分析西南地区天气数据分析的重要性及现有研究不足。1.2国内外研究现状综述国内外基于大数据技术的天气数据分析研究进展。1.3研究方法以及创新点简述SpringBoot与Spark结合的分析方法及论文创新点。第2章相关理论总结SpringBoot、Spark及天气数据分析相关理论,确立研究的理论基础。2.1SpringBoot框架理论介绍SpringBoot框架特点、优势及在数据分析中的应用。2.2Spark大数据处理理论阐述Spark核心概念、RDD及数据处理流程。2.3天气数据分析理论概述天气数据分析方法、模型及评估指标。第3章基于SpringBoot与Spark的西南天气数据分析系统设计详细介绍系统的架构设计、数据收集与处理方案。3.1系统架构设计系统总体架构、模块划分及交互方式。3.2数据收集方案介绍西南天气数据的来源、收集方法及预处理步骤。3.3数据处理流程阐述使用Spark进行天气数据处理的具体流程。第4章实验与分析呈现基于SpringBoot与Spark的西南天气数据分析实验结果,包括图表和文本解释。4.1实验环境与数据介绍实验所使用的软硬件环境及实验数据。4.2实验方法与步骤详细描述实验的具体方法和步骤,包括数据处理、模型训练等。4.3实验结果与分析通过图表和文本解释,分析实验结果,验证系统有效性。第5章系统应用与效果评估探讨系统在西南天气数据分析中的应用,并评估其效果。5.1系统应用场景介绍系统在西南地区天气预测、灾害预警等方面的应用。5.2效果评估方法阐述系统效果评估的指标和方法。5.3评估结果与分析分析系统应用效果,提出改进建议。第6章结论与展望总结
2025-11-18 22:46:06 10MB springboot vue mysql spark
1
针对热害矿井井下热环境参数和煤岩温度,分析了矿井热害形成原因。根据矿井具体条件提出了适合济宁三号煤矿的掘进工作面热害治理方案。利用局部降温系统制取低温冷水,降低风流温度,介绍了系统工作原理、布置流程及其运行情况,并对深井降温效果进行了分析。结果表明,掘进迎头温度降低5~7℃,掘进巷道最高温度控制在30℃。局部降温系统可以有效缓解局部地点热害状况,改善井下作业环境。
2025-11-18 21:49:00 156KB 行业研究
1
随着矿井不断向深部开采,机械化设备的大量使用,顾北煤矿掘进工作面温度异常增高,严重影响了工人的安全作业及矿井的正常生产。在分析热害性质、成因的基础上,并结合掘进面实际情况,提出将空气涡轮制冷技术应用在掘进工作面降温。现场实测表明,空气涡轮制冷技术不仅可以获得较低的温度,平均温度降低7℃左右,而且降温速度快。
2025-11-18 21:19:36 192KB 空气涡轮 掘进工作面
1