可以使用不同类型的传感器和测量技术来记录被测对象或场景的3D信息。 非接触式测量技术可以估算目标距离,利用微波,超声波或光波[1,2]。 然而,只有后一种技术才能实现良好的角分辨率性能,在紧凑的测量设置中,如3D成像系统所需[3]。 在通常的实践中,获取物体几何的两种方法是:(i)被动,通过使用多视图图像数据或(ii)主动,利用光学距离测量技术
2021-10-17 16:02:02 9.9MB 传感技术
1
本书中介绍的材料旨在让读者全面了解微流体技术的现状,并希望为读者提供必要的工具,使他们能够超越理解随着本领域的进步,本书的现有范围。本书中的材料改编自我们作者在该领域开发和教授的课程,本书适合在MEMS,生物MEMS或微流体学的入门课程中,作为高年级本科生和研究生的课程文本。该书的组织方案清晰,适合课堂使用。它分为基础部分和应用部分。
2021-10-09 14:37:15 20.13MB 传感技术
1
今天,互补金属氧化物半导体(CMOS)图像传感器(CIS),又称有源像素传感器(APS),是最流行的成像技术,每年生产数十亿种图像传感器,它们占成像仪市场的90%左右,几年内应该超过95%。。与电荷耦合器件(CCD)的主要替代成像技术相比,CISS具有功耗低、集成度高、速度快和集成芯片(甚至像素内部)先进CMOS功能的能力等主要优点。由于最新的技术创新,CISS目前,在图像质量和灵敏度方面与CCD的性能相匹配,甚至在数字单透镜反射、科学仪器和机器视觉等高端应用中也处于领先地位。由于这些优点,CISS还可用于恶劣的辐射环境中的应用,例如:空间应用、X射线医学成像、电子显微镜、核设施监测和远程处理(核电厂、核废物储存库、核物理设施…)、粒子检测和成像。军事应用等。设计、加固和测试此类应用的传感器需要了解暴露于辐射源时的CIS行为。自发明以来,进一步了解和提高APS固有良好的辐射硬度一直是人们感兴趣的话题。与旧的相比,随着CIS技术的深入发展(如本文所讨论的)带来的新行为的出现,这种兴趣也在不断增加。早期工作中使用的R代主流CMOS工艺。   本章的目的是概述当暴露在高能粒子辐射场中时,可经受现代顺式结构的寄生效应。   APS、CIS和单片有源像素传感器(MAPS)指定了相同类型的CMOS集成电路(IC):一个像素阵列,每个像素内有一个光电探测器和一个放大器。根据社区的不同,可以优先使用其中一个名称。APS是一个通用术语,CIS主要用于成像应用,而MAPS是粒子检测领域的主要术语,与混合检测器相比,它强调了设备的整体性。在大多数情况下,CIS是一种使用为成像应用优化的CMOS工艺(称为CIS工艺)制造的APS,而MAPS通常使用标准或高压CMOS工艺制造,其主要用途不是光学成像,而是高能粒子检测(和成像)。从辐射效应来看从本质上讲,如果光电探测器技术相同,MAPS和CIS之间就没有本质上的区别。这意味着,尽管本章关注的是独联体,但本文所讨论的大部分内容都适用于这两个传感器系列。   本章使用以下辐射效应概念来描述高能粒子对顺式的影响。请读者阅读本书的第一章或本节中给出的参考文献,了解这些定义、机制和属性的起源和局限性。   当穿过构成IC的材料层时,电离粒子(例如高能光子(x和γ射线)和带电粒子(电子、质子、重离子…)通过产生电子-空穴对而损失大部分能量。这种过量的电荷载流子可以通过诱发单事件效应(见〔16〕(及其参考文献)或总电离剂量(TID)效应来干扰或损坏IC。当单个粒子产生的电子空穴对足以干扰或损坏IC时,就会发生SEE,而TID效应是电离辐射累积暴露的结果。   TId(或吸收剂量)表示通过电离作用传递给每单位质量物质的平均能量,这里用Gy(SiO2)(即1J或每千克SiO2的能量)1,2表示。在医疗和航天应用中,电子电路吸收的电离辐射剂量通常低于100Gy-1KGy,而mGy在在电子显微镜或核和粒子物理实验中可以达到锗。通过本章,读者应记住,被吸收的TId会导致电介质中捕获的正电荷的积聚,在Si/氧化物界面上形成界面状态,并且这些缺陷密度随着TId的增加而增加。有关TID影响的详细审查,请参阅。   高能粒子也可以通过非电离相互作用在物质中失去能量。这些相互作用可以概括为与原子核的直接相互作用,它们通常导致原子核的位移。与电介质中主要关注的TID效应相反,原子位移主要是电路中晶体硅部分的问题。与辐射引起的原子位移有关的效应称为位移损伤效应,通过非电离相互作用传递给每单位质量物质的平均能量称为位移损伤剂量(dd)(通常以ev/g(si)表示)。需要注意的是,dd导致硅中缺陷的产生。晶格,可以作为肖克利读取霍尔(SRH)生成/复合中心或SRH载流子陷阱。这些缺陷可以以点状缺陷的形式出现在晶格中,也可以以簇状缺陷(也称为非晶态夹杂)的形式出现。综述了讨论dd概念(尤其是非电离能量损失(NIEL)概念)的起源和局限性的位移损伤效应。
2021-10-08 14:51:07 2.96MB 传感技术
1
随着现代科学技术的发展,光纤传感器技术迅速崛起,并越来越多的应用于日常生活的方方面面,大有取代电子传感器的趋势。近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。在新兴的物联网技术推动下,如何将光纤传感器与物联网技术完美融合无疑将成为当今科学技术研究的热点问题。   1 物联网   1.1 物联网的概念   笼统来说,物联网就是将各种信息传感设备与互联网结合起来而形成的一个巨大网络。具体来说,物联网就是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议把物品与互联网连接起来进行
1
使用C#开发的基于无线传感技术的渔场监测系统,里面含有sqlserver数据库和源码(C/S)
2021-09-28 20:19:43 944KB 上位机 C# 监测 .net
1
全球最畅销的机器人类书籍中文翻译版;为从事机器人和自动化研究提供全面、条理清晰和最新的基本原理知识,这些原理可作为机器人系统设计、分析和综合的基础;
2021-09-23 11:51:29 11.09MB 机器人 控制 传感技术 视觉
1
虚拟现实头戴显示器是目前最热门的数码设备,Oculus Rift已经上市,HTC Vive即将发货,索尼Playstation VR也将于夏天正式发售,不论是PC、游戏主机用户都可以体验到虚拟现实游戏的震撼。当然,智能手机也可以通过外设来实现入门级的虚拟现实体验,如谷歌纸板眼镜、三星Gear VR等等。     虽然虚拟现实头戴显示器是下一个消费电子热点,但大家对于其复杂的硬件构造、运行原理可能并不是十分了解。今天,我们就来看看虚拟现实头戴中究竟藏着什么秘密。     基本技术特性     首先,可以肯定的是虚拟现实头戴是一种显示器,头戴型的显示器,它本身并不
1
MEMS是微机电系统的英文缩写。MEMS是美国的叫法,在日本成为微机械,在欧洲被成为微系统。它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。
2021-09-18 22:36:10 4.1MB 传感技术
1
使用温度传感器为 PT100,这是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至 650℃ 的范围.本电路选择其工作在 -19℃ 至 500℃ 范围.。
2021-09-18 22:25:43 107KB 传感技术
1
本文介绍TEC驱动芯片MAX1968的控制原理及其特点,并给出了该芯片的应用设计方案,同时讨论了构成系统的各部件选择方案或原则,对不同的LD和TEC只要恰当地选择外围器件,用MAX1968构建的温度控制系统可以快速稳定地达到所设定的温度值,稳定性可达到0.01℃。
2021-09-12 15:24:08 216KB 传感技术
1