深度神经网络计算库(clDNN) 停产的仓库 现在,该项目是Intel:registered:OpenVino:trade_mark:Toolkit分发的组成部分。 它的内容和开发已移至 。 要获取最新的clDNN来源,请参考DLDT回购。 深度神经网络计算库( clDNN )是用于深度学习(DL)应用程序的开源性能库,旨在加速英特尔:registered:处理器图形(包括HD图形和Iris:registered:图形)上的DL推理。 clDNN包括高度优化的构建块,用于使用C和C ++接口实现卷积神经网络(CNN)。 我们创建了这个项目,以使DL社区能够在Intel:registered:处理器上进行创新。 支持的用法:图像识别,图像检测和图像分割。 经验证的拓扑: AlexNet *,VG
1
问答系统的实现机制多种多样,基于信息检索 (IR: Information Retrieval) 的、基于问答知识库 (KB: Knowledge Base) 的、基于知识图谱 (KG: Knowledge Graph) 的等等,一个相对完善的问答系统往往是多种机制的组合。
2022-03-15 22:38:01 2MB 人工智能 机器学习
1
深度信念网络,有代码,有实例,有数据。 用于深度网络预训练。
2022-03-14 19:41:55 42.67MB 深度信念网络 matlab代码 深度学习
1
异物侵入铁路限界对铁路系统可靠性造成了极大的威胁。为达到高分类准确率及低模型内存占用率兼备的目的,针对既有技术方法中分类效果、泛化性能较差以及耗时久、模型占用空间大等问题,本文提供了一种快速训练算法,采用网络迁移压缩同时进行的方式,提出基于特征图L1或L2范数的递归式裁剪准则剔除冗余卷积核以压缩网络。对于单个相机新场景的目标分类任务,只需使用在混合场景数据上得到的最优分类网络模型通过压缩和微调训练便可以实现不同场景铁路异物分类的快速训练。实验表明,在基于铁路场景数据库的测试中,该算法可以将原始VGG16模型的参数消耗内存压缩1 020倍,在不同的单个相机场景测试样本库上压缩后网络的分类误差最低为0.34%。
1
使用深度神经网络的基于视觉的手机盖板玻璃缺陷检测
2022-03-10 17:06:16 1.75MB 研究论文
1
关于数据集的注释: 使用一个简单的脚本将原始的.mat图像和基本事实转换为.txt文件。 数据目录包含这些.txt文件的示例(但不是全部)。 原始.mat文件可以从[Palis Vasco大学]( )获得。 使用注意事项: DBN_writeparams旨在替代DBN。 DBN仅由DBN_example使用。 DBN对象的参数应在DBN_writeparams和DBN_example中匹配(例如n_ins,hidden_​​layers_sizes,n_outs)。 去做: 在DBN_example中创建一个模块,用于加载训练后的权重和偏差。
2022-03-04 10:18:30 15.29MB Python
1
利用深度神经网络学习的特征进行多类轴承故障分类 该存储库包含提交给的论文的代码,该论文使用已学习的数据驱动功能进行故障诊断。 无需手动计算特征,而是通过深度神经网络从数据中学习特征。 然后将这些学习到的功能与SVM一起用于故障分类。 还提出了一种解释数据驱动功能的经验方法。 该论文已被接受并将出现在会议记录中。 数据: 我们使用公开可用的。 该数据集实际上是为预后应用准备的。 但是,我们将其用于故障诊断任务。 我们考虑四种故障类型:正常故障,内部故障,外部故障和球形故障。 原始数据是在几个月内收集的,直到其中一个轴承发生故障。 因此,对于正常情况,我们已在实验开始时收集了数据。 同样,对于错误情况,我们已在实验结束时获取了数据,该数据更接近发生错误的时间点。 我们实验中使用的文件的详细信息可以在下面找到。 提取后,包含原始数据的压缩文件提供了三个文件夹:1st_test,2nd_tes
1
包含深度学习基本原理、网络搭建、优化方案、CNN、RNN网络的所有基本知识,适合新手小白进行知识梳理。
2022-02-17 09:11:58 5.7MB 深度学习 网络 cnn rnn
1
【项目实战】Python实现深度神经网络gcForest(多粒度级联森林)分类模型(医学诊断) 资料说明:包括数据+代码+文档+代码讲解。 1.项目背景 2.数据获取 3.数据预处理 4.探索性数据分析 5.特征工程 6.构建GCForest建模 7.模型评估 8.结论与展望 注意事项
使用ConvNet的Twitter情绪分析 一个工具 预测推文的情绪“积极性” 如何使用它? >> from sentiment import sentiment_score >> print sentiment_score(u"I love you") 0.9999 它返回的情绪索引范围为0(负情绪)到1(正情绪)。 在线演示 预测单个推文的情绪“积极性” 概述的“积极性” 点击 算法 有关该算法的更多信息,请参阅。 技术选择 作为Web框架 作为神经网络训练的实现 作为神经网络分类(在线版本)的实现 训练技巧 扇入,扇出初始化 退出 阿达达 贡献者 韩晓和姚璐
1