利用深度神经网络学习的特征进行多类轴承故障分类 该存储库包含提交给的论文的代码,该论文使用已学习的数据驱动功能进行故障诊断。 无需手动计算特征,而是通过深度神经网络从数据中学习特征。 然后将这些学习到的功能与SVM一起用于故障分类。 还提出了一种解释数据驱动功能的经验方法。 该论文已被接受并将出现在会议记录中。 数据: 我们使用公开可用的。 该数据集实际上是为预后应用准备的。 但是,我们将其用于故障诊断任务。 我们考虑四种故障类型:正常故障,内部故障,外部故障和球形故障。 原始数据是在几个月内收集的,直到其中一个轴承发生故障。 因此,对于正常情况,我们已在实验开始时收集了数据。 同样,对于错误情况,我们已在实验结束时获取了数据,该数据更接近发生错误的时间点。 我们实验中使用的文件的详细信息可以在下面找到。 提取后,包含原始数据的压缩文件提供了三个文件夹:1st_test,2nd_tes
1
服务器状态检查中...