基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本界面 摄像头Frame中检测虫体数目,并在界面中显示标出 学习昆虫图像特征的提取,参考论文中提出的几个特征量 提取特征量并进行保存 按照神经网络方法搭建训练模型 搭建了线性SVM分类训练器 将特征提取和UI界面建立连接,实现拍照和预测判断一体 【机器学习训练算法】 基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本界面 摄像头Frame中检测虫体数目,并在界面中显示标出 学习昆虫图像特征的提取,参考论文中提出的几个特征量 提取特征量并进行保存 按照神经网络方法搭建训练模型 搭建了线性SVM分类训练器 将特征提取和UI界面建立连接,实现拍照和预测判断一体 【机器学习训练算法】基于机器视觉实现昆虫识别计数系统python源码+数据集+模型+详细项目说明.zip 【项目任务】 图片中昆虫虫体计数 PyQt和OpenCV结合做出基本
2024-04-25 13:53:37 14.67MB python 图像处理 机器学习
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114
2024-04-24 18:32:16 10.68MB 机器学习 python GBDT 最优路径
1
python
2024-04-22 16:09:33 83.65MB python 机器学习
1
图神经网络的初认识及代码
1
The 1st Place Solution of the Google Landmark 2019 Retrieval Challenge and the 3rd Place Solution of the Recognition Challenge.
2024-04-20 14:15:44 381KB Python开发-机器学习
1
在这一背景下,市面上出现了很多面向初学者的书,这些书往往只包含机器学习的基本数学式。与此同时,也有很多非常好的专业书。但遗憾的是,印象中很少有适合初学者在学习专
2024-04-19 11:16:53 16.14MB
1
ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA
2024-04-16 10:53:43 5KB 机器学习 ARIMA
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-04-15 09:42:39 74KB 机器学习 神经网络 粒子群算法 Matlab
1
本项目是作者预演的方案,内含源码和数据集。可以作为demo直接使用。
2024-04-14 17:19:30 159KB 机器学习 深度学习
fredmd_transformed数据集 线性回归 多项式回归 Lasso 岭回归 ElasticNet 等多种机器学习算法 预测模型 机器学习 numpy pandas sklearn 数据分析 数据挖掘 dates RPI W875RX1 DPCERA3M086SBEA CMRMTSPLx RETAILx INDPRO IPFPNSS IPFINAL IPCONGD IPDCONGD IPNCONGD IPBUSEQ IPMAT IPDMAT IPNMAT IPMANSICS IPB51222S IPFUELS CUMFNS HWI HWIURATIO CLF16OV CE16OV UNRATE UEMPMEAN UEMPLT5 UEMP5TO14 UEMP15OV UEMP15T26 UEMP27OV CLAIMSx PAYEMS USGOOD CES1021000001 USCONS MANEMP DMANEMP NDMANEMP SRVPRD USTPU USWTRADE USTRADE USFIRE USGOVT CES0600000007 AWOTMAN AWHMAN
2024-04-14 10:48:55 686KB Python 机器学习
1