基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统-机器学习算法应用(含Python工程源码)+数据集

上传者: 31136513 | 上传时间: 2024-04-24 18:32:16 | 文件大小: 10.68MB | 文件类型: RAR
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114

文件下载

资源详情

[{"title":"( 43 个子文件 10.68MB ) 基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统-机器学习算法应用(含Python工程源码)+数据集","children":[{"title":"项目5 基于排队时间预测的智能导航系统","children":[{"title":"final_files","children":[{"title":"data","children":[{"title":"过程数据","children":[{"title":"line11_train_data_dum_scale.csv <span style='color:#111;'> 543.66KB </span>","children":null,"spread":false},{"title":"test_6_data_no_dum_scale.csv <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"line11_passenger_hour_test.csv <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"gd_weather_report.txt <span style='color:#111;'> 14.55KB </span>","children":null,"spread":false},{"title":"test_data_dum_scale.csv <span style='color:#111;'> 178.87KB </span>","children":null,"spread":false},{"title":"line6_weather_date_final.csv <span style='color:#111;'> 60.03KB </span>","children":null,"spread":false},{"title":"line6_passenger_hour_test.csv <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"line6_weather_date.csv <span style='color:#111;'> 31.73KB </span>","children":null,"spread":false},{"title":"起点终点坐标.xlsx <span style='color:#111;'> 9.02KB </span>","children":null,"spread":false},{"title":"test_line6_weather_date_final.csv <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"test_data_dum.csv <span style='color:#111;'> 194.46KB </span>","children":null,"spread":false},{"title":"line6_train_data_dum_scale.csv <span style='color:#111;'> 541.08KB </span>","children":null,"spread":false},{"title":"date_holiday.txt <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"train_data_test.csv <span style='color:#111;'> 64.65MB </span>","children":null,"spread":false},{"title":"weather_report_result.csv <span style='color:#111;'> 8.17KB </span>","children":null,"spread":false},{"title":"line11_train_data_no_dum_scale.csv <span style='color:#111;'> 128.26KB </span>","children":null,"spread":false},{"title":"line6_weather_date_f.csv <span style='color:#111;'> 123.80KB </span>","children":null,"spread":false},{"title":"walk_time_result.csv <span style='color:#111;'> 276B </span>","children":null,"spread":false},{"title":"line11_passenger_hour.csv <span style='color:#111;'> 43.86KB </span>","children":null,"spread":false},{"title":"test_11_data_dum_scale.csv <span style='color:#111;'> 27.62KB </span>","children":null,"spread":false},{"title":"test_11_data_no_dum_scale.csv <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"line6_passenger_hour.csv <span style='color:#111;'> 43.62KB </span>","children":null,"spread":false},{"title":"test_6_data_dum_scale.csv <span style='color:#111;'> 27.54KB </span>","children":null,"spread":false},{"title":"选用景点.txt <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"line6_train_data_no_dum_scale.csv <span style='color:#111;'> 128.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"模型","children":[{"title":"gbdt_6.model <span style='color:#111;'> 142.83KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"map.jpg <span style='color:#111;'> 387.80KB </span>","children":null,"spread":false},{"title":"source","children":[{"title":"gui.py <span style='color:#111;'> 15.93KB </span>","children":null,"spread":false},{"title":"TrainDataResult.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"finaldata.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"TestDataResult.py <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false},{"title":"gbdtmodel.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"DealTrainData.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"singlepredict.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"DealWeatherData.py <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"getjingwei.py <span style='color:#111;'> 629B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"gui.cpython-37.pyc <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"gui_function.cpython-37.pyc <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"error.cpython-37.pyc <span style='color:#111;'> 312B </span>","children":null,"spread":false}],"spread":false},{"title":"getdistance.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"error.py <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 901B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明