离线安装包,测试可用。使用 pip install [完整包名] 进行安装
2021-12-21 17:02:05 1.87MB python
医疗保健分析 存储库内容: Python Notebook文件包含用于数据探索,功能工程和机器学习模型(朴素贝叶斯,XGBoost,神经网络)的项目代码。 PDF报告文件包含项目,谓词和结果的概述。 Datasets.zip包含项目中使用的测试和训练数据。 HTML文件是jupyter笔记本的降价促销,其中所有输出均无需使用python或其IDE即可查看。 介绍: 医疗机构承受着越来越大的压力,以改善患者的护理效果并获得更好的护理。 尽管这种情况是一个挑战,但它也为组织提供了一个机会,可以利用其数据中的更多价值和洞察力来显着提高护理质量。 医疗保健分析是指使用定量和定性技术对数据进行分析,以探索所获取数据中的趋势和模式。 尽管医疗保健管理使用各种指标来衡量绩效,但患者的住院时间很重要。 能够预测住院时间(LOS),使医院能够优化其治疗计划以减少LOS,从而降低患者,工作人员和
1
driving-behavior-risk-prediction. 2018平安产险数据建模大赛 驾驶行为预测驾驶风险 Fork或借鉴请注明出处  . Thx 比赛链接 RANK 第五周 第六周 相关文章 License Copyright (c) . All rights reserved. Licensed under the License.
2021-12-19 13:25:04 4.81MB competition python3 xgboost predictive-modeling
1
大量博客总结XGBoost
2021-12-17 16:08:32 3.1MB XGBoost
1
EDA和ML项目 存储库包含各种项目,这些项目都使用R语言编写了以下代码: 探索性数据分析 机器学习模型(线性回归,逻辑回归,k均值聚类,分层聚类,SVM,决策树,随机森林,时间序列分析,XGBoost) 以下是一些常用的程序包/库的列表,这些程序包/库被用作数据分析和构建机器学习模型的一部分 数据处理: dplyr,plyr,tidyr,stringer,data.table,lubridate(用于日期处理), 数据可视化: ggplot2,cowplot,ggthemes,比例 ML模型: randomForest,caret(用于数据拆分,交叉验证,预处理,特征选择,变量重要性估计等) 推荐模型: re荐 文本挖掘: tm,tidyverse
2021-12-17 12:54:13 26.84MB r random-forest clustering linear-regression
1
xgboost的源码,适用于python的安装
2021-12-15 21:15:37 1.13MB xgboost
1
xgboost源数据
2021-12-14 08:21:35 45KB 数据集
1
Xgboost使用pdf
2021-12-13 17:09:18 849KB Xgboost
1
高级工具库xgboost/LightGBM与建模实战:xgboost应用和实践,LightGBM
2021-12-09 14:50:21 7.46MB xgboost LightGBM 建模实战
1
行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.
1