The conventional optical flow has a fundamental limitation in handling motion details and image registration. In this paper, we propose a Zernike moments descriptor matching based symmetric optical flow estimation for high-quality image registration and motion estimation, which is an integration strategy of descriptor matching of Zernike moments and symmetric optical flow estimation. Zernike moment has less information redundancy and low sensitivity to n
2022-01-26 16:01:00 1024KB 研究论文
1
本程序允许在matlab下,是LTE中MIMO技术进行信道估计的算法,包括LS算法和LMMSE算法等
2022-01-23 22:28:27 897KB MIMO Estimation
1
Deep Learning-Based Human Pose Estimation A Survey综述xmind版
2022-01-22 19:16:16 947KB 深度学习 人工智能 姿态检测
1
使用LS和mmse的信道估计和横向比较,生成信道曲线,可以直接运行。
2022-01-21 10:57:57 3KB mmse MMSE信道估计 信道估计mmse ls
1
“自适应雷达探测与估计”,由Simon和Adm(遥感系列)主编。
2022-01-19 22:51:46 2.56MB PDF
1
用知云文献翻译加上自己的一些理解翻译的Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields这篇论文
1
Optimal State Estimation 课后上机练习源码,对于理解书中概念有很大帮助
2022-01-10 20:12:17 25.74MB Optimal State Estimation 源码
1
pygpc 基于广义多项式混沌方法的Python敏感性和不确定性分析工具箱 基本功能: N维系统的高效不确定性分析 使用Sobol指数和基于全局导数的敏感性指数进行敏感性分析 轻松耦合到用Python,Matlab等编写的用户定义模型... 并行化概念允许并行运行模型评估 高效的自适应算法可以分析复杂的系统 包括高效的CPU和GPU(CUDA)实施,可极大地加快解决高维和复杂问题的算法和后处理例程 包括最新技术,例如: 投影:确定最佳折减基数 L1最小化:利用压缩感测中的概念减少必要的模型评估 梯度增强型gPC:使用模型函数的梯度信息以提高准确性 多元素gPC:分析具有间断和急剧过渡的系统 优化的拉丁文Hypercube采样可实现快速收敛 应用领域: pygpc可用于分析各种不同的问题。 例如,在以下框架中使用它: 非破坏性测试: 无创性脑刺激: 经颅磁刺激:
1
使用T-S进行参考车速计算,参考车速是底盘控制的重要参数
2021-12-31 14:52:19 222KB 底盘 车速 参考车速预估 vehicle
神经过程家族 主要入口: 。 什么 ? 该存储库包含: 的文本 Pytorch代码(训练/绘图)以及预训练模型,以研究图像和合成一维数据集上的以下模型: 来自CNP 来自LNP AttnCNP和AttnLNP ConvCNP ConvLNP (“官方”)代码复制所有图像实验和带。 对于一维实验,请参见和 。 有关如何使用npf库的教程,请参阅NPF网站的“可 再现性”部分。 安装 点子 # clone repo pip install -r requirements.txt 请注意,skorch的版本必须为0.8,以确保可以正确上传预训练的模型。 码头工人 安装nvidia-docker 使用Dockerfile构建映像或使用Dockerfile docker pull yanndubs/npf:gpu 创建并运行一个容器,例如: docker run --
1