一个包含常用模式识别方法的工具箱,使用简单
2021-12-08 12:12:36 5.75MB 模式识别 svm adaboost 贝叶斯分类器
1
针对现有软测量模型更新方法的不足,将增量学习思想与 AdaBoost集成学习思想相结合,提出了一种具有增量学习性能的改进 AdaBoost集成学习算法。并将该改进的 AdaBoost与 BP神经网络一起形成了集成 BP神经网络,建立了基于改进 AdaBoost集成 BP网络的软测量模型。该软测量建模新方法可以提高单一 BP网络的精度,同时还能保证建模具有增量学习的更新性能。使用该软测量建模新方法建立抚钢 60t LF 炉钢水成分软测量模型,取得了较好的预测效果,可以满足实际生产的需要。
2021-12-06 19:40:31 835KB 自然科学 论文
1
Ada-IRL Adaboost逆向强化学习 一种使用类似于Adaboost的I-Rl算法的方法。 RL 开始进行强化学习的测试演示。 python rl_test.py 内部收益率 开始进行逆向强化学习的测试演示。 python irl_test.py
1
根据Adaboost和BP神经网络原理,编程实现基于BP_Adaboost算法的公司财务预警建模
2021-12-06 11:17:32 59KB BP 分类 Adaboost
1
adaboost代码
2021-12-02 09:18:33 6KB adaboost代码
1
Schapire的理论 定理:如果一个概念是弱可学习的,充要条件是它是强可学习的 这个定理证明是构造性的,派生了弱分类器的概念,即,比随机猜想稍好的分类器 这个定理说明: 多个弱分类器可以集成为一个强分类器 1990年,Schapire证明了一个关键定理,由此,奠定了集成机器学习的理论基础
2021-11-27 11:17:53 1.05MB 集成学习 Bagging ,Boosting ,AdaBoost
1
针对车牌无法识别的车辆,研究了一种车脸定位及识别方法。该方法分为两个阶段:首先,使用Adaboost算法进行车脸定位,并利用经验矩形方法进行定位改进;其次,在定位出来的车脸区域提取SIFT(scale-invariant feature transform)和SURF(speeded up robust feature)局部不变性特征,利用这两种不变性特征的叠加及位置约束改进匹配算法,与标准车型数据库中的车脸特征进行匹配,根据匹配结果进行车脸识别,从而得到车辆类型。实验结果表明,该方法的正确识别率达到83.6%。交通卡口抓拍到的车辆照片基本是正前照,无法获取车身侧面信息分析其车型。针对车牌无法识别的车辆,通过车脸定位、特征提取,并与标准车型库中车脸进行对比,进而识别车脸,该识别车脸的方法为识别车型提供了一种新途径。
1
为解决当被检测图像中具有复杂背景或者含有多人脸时,不能够快速准确的进行人脸检测的问题,本文提出一种基于肤色分割和改进AdaBoost算法的人脸检测方法。首先利用肤色分割方法对样本图像实现图像的预处理,排除样本图像的复杂背景和人体非肤色区域,简化后续的人脸检测工作。然后对AdaBoost算法的弱分类器使用双阈值判决方法,以减少弱分类器个数,提升训练速度;改进权值更新规则,防止训练过程中出现过分配现象。最后对基于肤色分割得到的区域图像利用改进后的Adaboost算法进行最后的精确人脸检测。仿真试验表明,两种算法结合后在训练速度上提升,在检测速度和检测率上有明显提高。
1
简单易懂的人脸检测程序,基于opencv自带的分类器,可直接运行
2021-11-25 16:10:00 27.81MB Adaboost 人脸检测 opencv
1
可实现实时的人脸检测与跟踪,正确率高,使用opencv编写。
2021-11-25 15:54:35 9KB 人脸检测与跟踪
1