广告广告 字节跳动广告系统下的穿山甲平台大量招人,有兴趣的直接发简历到我邮箱:。 也可以直接加我 QQ:2263509062 基于LSTM的中文情绪识别 基于keras深度学习库,搭建LSTM网络,来对数据集进行情绪识别,分成六类情绪。 数据集 下载地址: 数据概览: 4万多条句子,分为其他(Null), 喜好(Like),悲伤(Sad),厌恶(Disgust),愤怒(Anger),高兴(Happiness)六类 数据来源:数据分别来源于NLPCC Emotion Classification Challenge(训练数据中17113条,测试数据中2242条)和微博数据筛选后人工标注(训练数据中23000条,测试数据中2500条)。 数据提供方: 清华大学计算机系黄民烈副教授 项目结构 |——data | |——train.json 原数据集 | |——stopWords.tx
2022-03-01 18:36:11 35.01MB Python
1
通过神经网络进行光学字符识别 本练习的任务是开发一个神经网络模型,该模型可以将人类手写的数字分类为前10个数字。 通过sklearn提供的内置实用程序功能加载MNIST数字数据集。 导入必要的类以进行k交叉折叠验证。 您可以根据您的计算预算和任务复杂程度自由选择k,但对于大多数情况,“ k = 5”就足够了。 请预留20%的图像进行测试。 为“ MLPClassifier”定义一个超参数网格,该网格是Sklearn的神经网络模型实现。 在上面选择的范围内定义一个随机搜索过程,然后通过为搜索对象调用'.fit'方法来训练模型。 报告一种测试准确性和发现的最佳超参数。
2022-02-24 12:16:05 3KB JupyterNotebook
1
Unity游戏源码,C#语言,适合二次开发
2022-02-21 09:28:01 138.53MB unity 游戏 c语言 游戏引擎
骇客深度学习:使用TensorFlow 2和Keras和Python的机器学习教程(包括Jupyter笔记本)-(LSTM,超电流表调整,数据预处理,偏差方差折衷,异常检测,自动编码器,时间序列预测,对象检测,情感分析,使用BERT进行意图识别)
1
FP检查器 针对IEEE 2021年安全和隐私研讨会的Artifact版本,论文标题为“指纹识别:学习检测浏览器指纹行为” 数据采集 我们使用OpenWPM收集脚本内容及其执行跟踪。 收集脚本内容 我们通过扩展OpenWPM的网络监视工具来收集脚本内容。 默认情况下,此检测将保存加载到脚本标记中的所有HTTP响应的内容。 我们扩展了OpenWPM,以捕获浏览器加载的所有HTML文档的响应内容。 这使我们能够捕获外部和内联JavaScript。 我们进一步解析HTML文档以提取内联脚本。 该细节至关重要,因为绝大多数网页都使用内联脚本 。 收集脚本执行跟踪 我们通过扩展OpenWPM的脚本执行工具来收集脚本执行跟踪。 OpenWPM记录脚本正在访问的Javascript API的名称,访问的方法名称或属性名称,传递给该方法的任何参数或该属性设置或返回的值以及调用时的堆栈跟踪。 默认情况下,
2022-02-15 09:06:34 634KB JavaScript
1
用于命名实体识别(或序列标记)的LSTM-CRF模型 该存储库实现了用于命名实体识别的LSTM-CRF模型。 该模型与的模型相同,只是我们没有BiLSTM之后的最后一个tanh层。 我们在CoNLL-2003和OntoNotes 5.0英文数据集上均达到了SOTA性能(请通过使用Glove和ELMo来检查我们的,通过对BERT进行微调来检查其他)。 公告内容 我们实现了模块,该模块允许O(log N)推断和回溯! 通过微调BERT / Roberta **获得 模型 数据集 精确 记起 F1 基于BERT的情况+ CRF(此存储库) CONLL-2003 91.69 92.05 91.87 Roberta-base + CRF(此仓库) 2003年 91.88 93.01 92.44 基于BERT的情况+ CRF(此存储库) 笔记5 89.57 89.45
2022-02-14 23:46:06 50KB Python
1
Android语音识别源码
2022-02-12 12:44:00 1.02MB Android 语音识别
1
面部识别 使用TensorFlow进行面部表情识别 介绍 深度学习的面部表情识别。 使用TensorFlow 1.4实现CNN(卷积神经网络)。 代号 Test_Images:用于测试模型的图像目录。 Train_Images:用于转换神经网络的图像目录。 collect_images.py:从Bing和Google收集面部图像。 convert_images.py:将图像文件(* .jpg,*。jpeg, .png)转换为数据集文件( .bin)。 dataset.py:用于训练或测试神经网络的数据集类。 cnn.py:创建CNN并对其进行训练或对图像进行分类。 运行代码示例 将图像转换为数据集 >>> import convert_images as ci >>> ci.IMAGES_DIR = './Train_Images' >>> ci.main('./train.b
1
该课题为基于Matlab的交通标志识别系统。带有一个人机交互界面。可以判别红色精灵蓝色指示和黄色警示三类交通标志。可以进行二次拓展,也就是每次识别不需要人为手工的去选择颜色。也可以进行视频的识别。识别之后可以进行语音播报。
2022-02-07 14:05:17 3.54MB matlab 音视频 开发语言
1
易语言数字验证码识别源码,数字验证码识别,读取图片,判断A,判断B,判断C,判断D,判断相差值
1