通过神经网络进行光学字符识别-源码

上传者: 42097369 | 上传时间: 2022-02-24 12:16:05 | 文件大小: 3KB | 文件类型: -
通过神经网络进行光学字符识别 本练习的任务是开发一个神经网络模型,该模型可以将人类手写的数字分类为前10个数字。 通过sklearn提供的内置实用程序功能加载MNIST数字数据集。 导入必要的类以进行k交叉折叠验证。 您可以根据您的计算预算和任务复杂程度自由选择k,但对于大多数情况,“ k = 5”就足够了。 请预留20%的图像进行测试。 为“ MLPClassifier”定义一个超参数网格,该网格是Sklearn的神经网络模型实现。 在上面选择的范围内定义一个随机搜索过程,然后通过为搜索对象调用'.fit'方法来训练模型。 报告一种测试准确性和发现的最佳超参数。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明