这是一款适用于您自制电动汽车的开源 BMS。 它包括帮助您构建和编程自己的电路板的文件。 您需要制作电路板,购买组件并将它们焊接到电路板上,然后对电路板上的芯片进行编程。 有一个主控板和多个模块板。 母版有一个屏幕,让您知道正在发生的事情。 它还有一个 LED 作为警告灯,以防发生故障(例如电池电压低)。 您需要为电池组中的每个电池制作一个模块。
2023-04-08 22:31:58 951KB 开源软件
1
近年来,PDA、数字相机、手机、可携式音讯设备和蓝芽设备等越来越多的产品采用锂电池作为主要电源。锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化。针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池。   由于锂离子电池能量密度高,因此难以确保电池的安全性。在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而产生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,因而降低可充电次
2023-04-08 21:45:52 240KB 简述锂电池保护IC的重要性 其它
1
适用于MacOS的AirPods声音质量修复器和电池寿命增强器 修复了在Mac上使用AirPods时音质下降的问题。 它将默认音频输入强制为内置麦克风,而不是AirPods的麦克风,因此MacOS不必混合输出。 它还可以延长电池寿命,因为AirPods不必向后播放声音。 如果您有更多输入设备,则可以选择要强行通过AirPods麦克风的设备。 该应用程序在菜单栏中运行。 从我的下载已编译的应用程序。
2023-04-08 12:43:27 314KB Objective-C
1
在实际应用中,由于锂电池单体之间的差异性,经一段时间的充放电后发现各单体电池上、下限电压出现参差不齐的现象,严重影响到系统的性能。针对这种情况提出了上均衡和下均衡的概念,然后对锂电池的上、下均衡电路进行了深入研究。实验结果证明,几种锂电池均衡电路设计的正确性,为研究高性能混合动力系统奠定了坚实的基础。
2023-04-07 20:57:10 105KB TL431 锂电池 文章 技术应用
1
光伏电池性能对激光无线能量传输系统设计有重要影响。采用940 nm 激光辐照单晶硅光伏电池,研究了光伏电池输出特性随激光强度和电池温度的变化规律。研究结果表明,短路电流随激光功率增加呈现线性增加后饱和的趋势。开路电压和效率与激光功率的关系则呈单峰特性。实验测得光伏电池在293 K 时最大效率为29.49%。在283 K~308 K 范围内,激光功率较低时,短路电流受温度影响较小,基本保持不变。激光功率较大时,短路电流随温度升高而线性下降。开路电压和效率则随温度升高而线性下降,但下降速率随激光强度的变化而变化。同时仿真了光伏电池效率与串联电阻的关系。结果表明,在强激光辐照下,减小串联电阻,降低复合电流的大小是提高单晶硅光伏电池效率的两个重要方面。
2023-04-07 19:54:22 2.23MB 激光光学 输出特性 实验研究 单晶硅光
1
针对大规模电动汽车充电功率因数较低,谐波对电网污染严重,系统效率低、充电速度慢,不能满足电动汽车充电要求的特点,设计采用了一种前级带Boost-PFC的LLC谐振电源和后级为双向DC-DC的电路拓扑结构。针对功率因数低,采用单周期控制方法实现功率因数校正;利用在高频变压器副边添加电容和变压器漏感间的谐振,达到LLC谐振以减小开关损耗;采取正负脉冲双向DC-DC电路来加快充电速率。在Matlab和PSIM仿真验证了该设计能够实现电源变换电路开关元器件的零电压开通,且可以缩短充电时间,使网侧电流谐波畸变率小于5%,功率因数达到0.975。仿真验证了该设计在高功率因数和快速性方面达到了预期,对于汽车电池的应用有很好的效果。
1
镍氢电池阻容模型的MATLAB仿真模型,供学习参考!不下后悔!
2023-04-06 18:52:06 109KB MATLAB仿真
1
电池_电池电量_电压电量显示_电池电量监测_电量检测 使用递归方式计算多次采样的ADC的平均值 adc检测电池电压做电量灯显示的跳动问题如何解决 区间法、回差控制(类似滞回比较器)的方法改善电池电量来回跳动问题
2023-04-06 09:22:03 5KB 电池电量 电池电量检测 电量显示
1
本用户手册描述了使用MCU的STM32(ARM的Cortex:trade_mark:-M3内核)系列的单节锂离子电池电量监测计技术。电量计演示板用于显示基于STM32微控制器的燃料电池的容量监控的能力。
2023-04-05 14:20:55 3.2MB 电池电量计 l6924 stm32f1034 电路方案
1
描述 AD7280A是一款完整的数据采集系统,内置一个高压输入多路复用器、一个低压输入多路复用器、一个12位、1 μs SAR ADC和用于通道时序控制的片内寄存器。HV MUX用于测量串联锂离子电池单元,如图1所示。LV MUX提供单端ADC输入,可结合外部热敏电阻测量个别电池单元的温度;如果不需要温度测量,则可利用辅助ADC输入转换任何其它0 V至5 V输入信号。另外还提供2.5 V精密基准电压源和片内电压调节器。 AD8280是一款用于锂离子电池组的纯硬连线安全监控器,配合AD7280A使用时,可提供具有可调阈值检测和共用或单独报警输出的低成本、冗余、备用电池监控器。它具有自测功能,因此适合混合动力电动汽车等高可靠性应用或者不间断电源等高压工业应用。AD7280A和AD8280均从监控的电池单元获得电源。 ADuM5404集成一个DC-DC转换器,用于向ADuM1400和ADuM1401隔离器的高压端供电,以及向AD7280A SPI接口提供VDRIVE电源。这些4通道、磁性隔离电路是安全、可靠、易用的光耦合器替代解决方案。
2023-04-04 15:24:49 7.18MB 电池监控 ad7280a 电路方案
1