EmbedKGQA数据集,从谷歌云盘下载,分享给大家,在国内下载速度更快。 原文链接: https://drive.google.com/drive/folders/1RlqGBMo45lTmWz9MUPTq-0KcjSd3ujxc 因CSDN要求每个资源不能超过1000MB,故对数据集进行了分卷压缩,本链接中为该压缩分卷第1卷,共10卷,必须下载齐所有分卷才能够解压出完整数据集。 解压后的压缩包内应包含: data.zip pretrained_models.zip qa_test_webqsp_fixed.txt 共三个文件。
2024-05-21 18:14:09 999MB NLP 深度学习
1
这个Python项目是一个基于深度学习的聊天机器人设计。它利用了神经网络和自然语言处理技术,旨在实现与用户进行智能对话的功能。 该项目主要包括以下几个部分: 1. 数据预处理:对输入的文本数据进行清洗、分词、去除停用词等操作,以便于后续的模型训练。 2. 模型构建:使用深度学习框架(如TensorFlow或PyTorch)构建神经网络模型,包括编码器和解码器两部分。编码器用于将输入的文本转换为隐藏状态,解码器用于根据隐藏状态生成回复。 3. 模型训练:使用大量的对话数据对模型进行训练,通过反向传播算法优化模型参数,以提高模型的生成能力和准确性。 4. 聊天接口:设计一个简单的聊天界面,用户可以输入问题或语句,机器人会根据输入内容生成相应的回复,并与用户进行实时交互。 5. 模型评估:使用一些指标(如困惑度、BLEU等)对模型的性能进行评估,以了解模型在生成回复方面的准确性和流畅度。 通过这个项目,你可以学习和掌握深度学习和自然语言处理的基本概念和技术,了解如何构建和训练神经网络模型,以及如何使用模型进行文本生成和对话交互。同时,你还可以深入了解聊天机器人的设计原理和实现细节,为进一步开发和应用聊天机器人打下基础。
2024-05-20 21:02:51 232.78MB 课程设计 项目源码 python
百度飞桨学习python机器学习、深度学习资料 【机器学习】GRU:实践-情感分类的另一种方法 【机器学习】LSTM:实践-谣言检测 【机器学习】python复杂操作:实践-爬虫与数据分析 【机器学习】ResNet-50原理:实践-CIFAR10数据集分类 【机器学习】VGGNet原理:实践-中草药分类 【机器学习】Word2Vec实现:实践-基于CBOW和Skip-gram实现Word2Vec 【机器学习】飞桨高层API的实践 【计算机视觉】1.实践:飞浆与python入门操作 【计算机视觉】2.实践:python复杂操作 【计算机视觉】3.理论:计算机视觉概述 【计算机视觉】4.实践:基于深度神经网络的宝石分类 【计算机视觉】5.实践:基于卷积神经网络的美食识别 【计算机视觉】6.实践:基于VGG-16 的中草药识别 等等
2024-05-20 17:30:37 35.42MB paddlepaddle paddlepaddle python 机器学习
1
基于win10系统,实用anaconda配置python环境,在anaconda里面下载vscode对项目进行编辑。基于pytorch深度学习框架,实用开源模型yolov4实现模板检测与yolov5实现车牌检测与LPRNet实现车牌检测 使用说明 1、运行detect.py:实现对 /inference/images 路径下的图片和视频进行目标检测,卡车计数,和车牌检测与识别 2、在/inference/output 路径下可看到输出情况
2024-05-19 20:48:36 11.27MB pytorch 深度学习 车牌检测
1
1、比较了传统信道估计算法LS、MMSE的OFDM信道估计的性能。 2、MATLAB搭建了FC-DNN信道估计框架,参见《Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems》。 3、所有程序均带有注释,便于理解。 4、两个文件夹,采用不同阶的调制方式,4阶和8阶。QPSK。 5、程序完全用Matlab实现。
2024-05-16 21:41:33 94.88MB 深度学习 dnn OFDM 信道估计
1
在win10系统环境下深度学习tensorflow环境搭建实验步骤
2024-05-16 10:24:32 388KB 深度学习
1
FlaskApp
2024-05-14 17:26:37 3KB HTML
1
使用说明 分对话系统和机器翻译两部分 data为数据集 model为训练的模型 translation文件夹下又分了Seq2Seq和transformer两个模型,大家按需查看使用 以transformer文件夹为例,attention.py主要实现了注意力机制,transformer.py实现了transformer的主体架构,data.py为数据的预处理以及生成了词典、dataset、dataloader,readdata.py运行可以查看数据形状,train.py为训练模型,predict.py为预测,config.py为一些参数的定义。 transformer机器翻译的模型是用cuda:1训练的,如果要使用可能需要修改代码 如:gpu->cpu,即在CPU上使用 torch.load('trans_encoder.mdl', map_location= lambda storage, loc: storage) torch.load('trans_decoder.mdl', map_location= lambda storage, loc: storage)
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD3 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-05-12 15:41:48 14.68MB 深度学习 数据挖掘 交通预测 交通网络
1
本文来自cnblogs,本文介绍基于区域提名的方法,包括R-CNN、SPP-net、FastR-CNN、FasterR-CNN、R-FCN和端到端(End-to-End)的目标检测方法,包括YOLO和SSD。普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫。而在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务。其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(boundingbox)标记,如图1(2)
2024-05-11 17:54:37 605KB
1