基于LS/MMSE/深度学习DNN的OFDM信道估计,MATLAB实现

上传者: 43178683 | 上传时间: 2024-05-16 21:41:33 | 文件大小: 94.88MB | 文件类型: ZIP
1、比较了传统信道估计算法LS、MMSE的OFDM信道估计的性能。 2、MATLAB搭建了FC-DNN信道估计框架,参见《Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems》。 3、所有程序均带有注释,便于理解。 4、两个文件夹,采用不同阶的调制方式,4阶和8阶。QPSK。 5、程序完全用Matlab实现。

文件下载

资源详情

[{"title":"( 35 个子文件 94.88MB ) 基于LS/MMSE/深度学习DNN的OFDM信道估计,MATLAB实现","children":[{"title":"OFDM信道估计","children":[{"title":"moducation_4","children":[{"title":"Train_net.mat <span style='color:#111;'> 67.55KB </span>","children":null,"spread":false},{"title":"Num_channel.m <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"Inter_pilot.m <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"Train_set.mat <span style='color:#111;'> 15.11MB </span>","children":null,"spread":false},{"title":"get_train_set.m <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"Channel_estimation_DL_4.m <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"generatedataforDL_4.m <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"Valid_set.mat <span style='color:#111;'> 3.78MB </span>","children":null,"spread":false},{"title":"Channel_processing.m <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"channelestimation_MMSE.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"Traditional_channel_estimation.m <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"Train_DL_net.m <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"LS_and_MMSE.m <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"Parameters.mat <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"channelestimation_LS.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"MMSE.m <span style='color:#111;'> 783B </span>","children":null,"spread":false}],"spread":false},{"title":"moducation_8","children":[{"title":"Train_net.mat <span style='color:#111;'> 67.07KB </span>","children":null,"spread":false},{"title":"Num_channel.m <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"Inter_pilot.m <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"Train_set.mat <span style='color:#111;'> 60.65MB </span>","children":null,"spread":false},{"title":"get_train_set.m <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"hard_verdict.m <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"Num_phase.m <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"Channel_estimation_DL_8.m <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"Valid_set.mat <span style='color:#111;'> 15.16MB </span>","children":null,"spread":false},{"title":"generatedataforDL_8.m <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"Channel_processing.m <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"channelestimation_MMSE.m <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"Traditional_channel_estimation.m <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"Train_DL_net.m <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"LS_and_MMSE.m <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"Parameters.mat <span style='color:#111;'> 760B </span>","children":null,"spread":false},{"title":"channelestimation_LS.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"MMSE.m <span style='color:#111;'> 783B </span>","children":null,"spread":false},{"title":"constellation_mapping.m <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明