吴恩达机器学习课程课后习题资料和代码资料
2024-05-08 11:50:22 31.42MB 机器学习 吴恩达
1
机器学习人脸识别简单项目,有数据集,可运行代码,说明文档
2024-05-07 18:56:17 11.74MB python 机器学习 人脸识别
1
机器学习sklearn
2024-05-03 08:49:55 159.08MB sklearn 机器学习 人工智能 python
1
主要用于数据集的制作,要点在于图片的resize和由彩色图到灰度图的转换,以及随机划分测试与训练集
2024-05-01 17:55:17 2KB dataset 机器学习 数据集制作
1
案例基于pyspark开发,使用了线性,Ridge,LASSO,Elastic Net,决策树,梯度提升树以及随机森林7种回归模型完成预测,并使用了均方差和R2评估指数对七种模型效果进行了比较分析
2024-04-30 14:56:19 2.91MB 机器学习 随机森林 pyspark
1
基于机器视觉的害虫种类及数量检测 一、研究目的 研究的目的在于建立一套远程病虫害自动识别系统,有助于缓解农业植保人员和病虫害鉴定专家的人力资源紧张,有助于病虫害知识有限的农业人员进行及时的病虫害检测,并且,通过害虫种类数目的监测和信息收集,定期对昆虫数据进行整理和分析,建立病虫害爆发的规律模型,进而预测判断病虫害爆发的时间,及时通知农业植物保护人员和农户进行合理地科学地预防。提高农作物产量和质量。 二、研究内容及结论 (1) 设计实现了一套可适用于野外的害虫捕获和图像采集装置。该装置放置在农业种植区域,24 小时进行害虫的诱杀和图像采集,同时,装置可以通过无线网络将害虫图像上传至农业监控中心虫类鉴别服务器,并进行害虫种类的识别,进行产区内害虫种类数目的信息收集。 (2) 开发了一套基于机器视觉的昆虫计数工作方法。开发了一套的适用于苍蝇粘板等包含多数昆虫设备的图像的基于机器视觉的昆虫计数工作方法。该方法首先对包含多数昆虫的图片进行二值化预处理,然后进行轮廓的查找,并进行轮廓的计数,得到的数目反映了图片中的昆虫数目的数量级。该方法适用于苍蝇粘板图像等包含多数昆虫虫体的图像上。 (3)
1
决策树(Decision Tree)是一种在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法。由于这种决策分支画成图形很像一棵树的枝干,因此得名决策树。在机器学习中,决策树是一个预测模型,代表的是对象属性与对象值之间的一种映射关系。 决策树的应用场景非常广泛,包括但不限于以下几个方面: 金融风险评估:决策树可以用于预测客户借款违约概率,帮助银行更好地管理风险。通过客户的历史数据构建决策树,可以根据客户的财务状况、征信记录、职业等信息来预测违约概率。 医疗诊断:医生可以通过病人的症状、体征、病史等信息构建决策树,根据不同的症状和体征来推断病情和诊断结果,从而帮助医生快速、准确地判断病情。 营销策略制定:企业可以通过客户的喜好、购买记录、行为偏好等信息构建决策树,根据不同的特征来推断客户需求和市场走势,从而制定更有效的营销策略。 网络安全:决策树可以用于网络安全领域,帮助企业防范网络攻击、识别网络威胁。通过网络流量、文件属性、用户行为等信息构建决策树,可以判断是否有异常行为和攻击威胁。
2024-04-29 13:18:26 108KB 机器学习
1
flameTimewarpML 适用于Autodesk Flame的机器学习框架插值工具。 基于arXiv2020-RIFE,原始实现: : @article{huang2020rife, title={RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation}, author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang}, journal={arXiv preprint arXiv:2011.06294}, year={2020} } 来自Julik Tarkhanov的Flame动画曲线插值代码: : 安装 单工作站/易于安装 从“页面下载最新发
2024-04-28 17:36:33 207MB Python
1
三维点云机器学习检测定位圆心,拟合轴线(基于open3d和python)对应点云数据,可直接open3d读取,点云颜色为全白,包含xyzrgb
2024-04-28 11:07:17 611KB 机器学习 python open3d
1
1.项目利用Python爬虫技术,通过网络爬取验证码图片,并通过一系列的处理步骤,包括去噪和分割,以实现对验证码的识别和准确性验证。 2.项目运行环境:Python环境:需要Python 2.7配置,在Windows环境下下载Anaconda完成Python所需的配置,下载地址为https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 3.项目包括4个模块:数据爬取、去噪与分割、模型训练及保存、准确率验证。用request库爬虫抓取验证码1200张,并做好标注。图片爬取成功后进行去噪与分割。处理数据后拆分训练集和测试集,训练并保存。模型保存后,可以被重新使用,也可以移植到其他环境中使用。 4.准确率评估:测试结果精度达到99%以上。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131571160
2024-04-28 10:40:57 23.11MB python 爬虫 机器学习 验证码识别
1